
Foundations and TrendsR© in
Machine Learning
Vol. 5, Nos. 2–3 (2012) 123–286
c© 2012 A. Kulesza and B. Taskar
DOI: 10.1561/2200000044

Determinantal Point
Processes for Machine Learning

By Alex Kulesza and Ben Taskar

Contents

1 Introduction 124

1.1 Diversity 125
1.2 Outline 127

2 Determinantal Point Processes 129

2.1 Definition 130
2.2 L-ensembles 134
2.3 Properties 138
2.4 Inference 141
2.5 Related Processes 154

3 Representation and Algorithms 163

3.1 Quality versus Diversity 164
3.2 Expressive Power 166
3.3 Dual Representation 174
3.4 Random Projections 179
3.5 Alternative Likelihood Formulas 184

4 Learning 186

4.1 Conditional DPPs 186
4.2 Learning Quality 189



5 k-DPPs 203

5.1 Definition 204
5.2 Inference 206
5.3 Experiments: Image Search 216

6 Structured DPPs 227

6.1 Factorization 229
6.2 Second-order Message Passing 234
6.3 Inference 241
6.4 Experiments: Pose Estimation 250
6.5 Random Projections for SDPPs 256
6.6 Experiments: Threading Graphs 260

7 Conclusion 275

7.1 Open Question: Concavity of Entropy 275
7.2 Open Question: Higher-order Sums 276
7.3 Research Directions 276

References 277



Foundations and TrendsR© in
Machine Learning
Vol. 5, Nos. 2–3 (2012) 123–286
c© 2012 A. Kulesza and B. Taskar
DOI: 10.1561/2200000044

Determinantal Point
Processes for Machine Learning

Alex Kulesza1 and Ben Taskar2

1 University of Michigan, USA, kulesza@umich.edu
2 University of Pennsylvania, USA, taskar@cis.upenn.edu

Abstract

Determinantal point processes (DPPs) are elegant probabilistic models
of repulsion that arise in quantum physics and random matrix theory.
In contrast to traditional structured models like Markov random fields,
which become intractable and hard to approximate in the presence
of negative correlations, DPPs offer efficient and exact algorithms for
sampling, marginalization, conditioning, and other inference tasks. We
provide a gentle introduction to DPPs, focusing on the intuitions, algo-
rithms, and extensions that are most relevant to the machine learn-
ing community, and show how DPPs can be applied to real-world
applications like finding diverse sets of high-quality search results,
building informative summaries by selecting diverse sentences from doc-
uments, modeling nonoverlapping human poses in images or video, and
automatically building timelines of important news stories.



1
Introduction

Probabilistic modeling and learning techniques have become
indispensable tools for analyzing data, discovering patterns, and
making predictions in a variety of real-world settings. In recent years,
the widespread availability of both data and processing capacity
has led to new applications and methods involving more complex,
structured output spaces, where the goal is to simultaneously make a
large number of interrelated decisions. Unfortunately, the introduction
of structure typically involves a combinatorial explosion of output
possibilities, making inference computationally impractical without
further assumptions.

A popular compromise is to employ graphical models, which are
tractable when the graph encoding local interactions between variables
is a tree. For loopy graphs, inference can often be approximated in the
special case when the interactions between variables are positive and
neighboring nodes tend to have the same labels. However, dealing with
global, negative interactions in graphical models remain intractable,
and heuristic methods often fail in practice.

Determinantal point processes (DPPs) offer a promising and com-
plementary approach. Arising in quantum physics and random matrix
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theory, DPPs are elegant probabilistic models of global, negative cor-
relations, and offer efficient algorithms for sampling, marginalization,
conditioning, and other inference tasks. While they have been studied
extensively by mathematicians, giving rise to a deep and beautiful
theory, DPPs are relatively new in machine learning. We aim to pro-
vide a comprehensible introduction to DPPs, focusing on the intuitions,
algorithms, and extensions that are most relevant to our community.

1.1 Diversity

A DPP is a distribution over subsets of a fixed ground set, for instance,
sets of search results selected from a large database. Equivalently, a
DPP over a ground set of N items can be seen as modeling a binary
characteristic vector of length N . The essential characteristic of a DPP
is that these binary variables are negatively correlated; that is, the
inclusion of one item makes the inclusion of other items less likely. The
strengths of these negative correlations are derived from a kernel matrix
that defines a global measure of similarity between pairs of items, so
that more similar items are less likely to co-occur. As a result, DPPs
assign higher probability to sets of items that are diverse; for example,
a DPP will prefer search results that cover multiple distinct aspects of
a user’s query, rather than focusing on the most popular or salient one.

This focus on diversity places DPPs alongside a number of recently
developed techniques for working with diverse sets, particularly in
the information retrieval community [23, 26, 121, 122, 140, 158, 159].
However, unlike these methods, DPPs are fully probabilistic, opening
the door to a wider variety of potential applications, without compro-
mising algorithmic tractability.

The general concept of diversity can take on a number of forms
depending on context and application. Including multiple kinds of
search results might be seen as covering or summarizing relevant
interpretations of the query or its associated topics; see Figure 1.1.
Alternatively, items inhabiting a continuous space may exhibit diversity
as a result of repulsion, as in Figure 1.2. In fact, certain repulsive quan-
tum particles are known to be precisely described by a DPP; however,
a DPP can also serve as a model for general repulsive phenomena, such
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Fig. 1.1 Diversity is used to generate a set of summary timelines describing the most impor-
tant events from a large news corpus.

Fig. 1.2 On the left, points are sampled randomly; on the right, repulsion between points
leads to the selection of a diverse set of locations.

Fig. 1.3 On the left, the output of a human pose detector is noisy and uncertain; on the
right, applying diversity as a filter leads to a clean, separated set of predictions.

as the locations of trees in a forest, which appear diverse due to physi-
cal and resource constraints. Finally, diversity can be used as a filtering
prior when multiple selections must be based on a single detector or
scoring metric. For instance, in Figure 1.3 a weak pose detector favors
large clusters of poses that are nearly identical, but filtering through a
DPP ensures that the final predictions are well separated.

Throughout this survey we demonstrate applications for DPPs in a
variety of settings, including:

• The DUC 2003/2004 text summarization task, where we form
extractive summaries of news articles by choosing diverse
subsets of sentences (Section 4.2.1);
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• An image search task, where we model human judgments
of diversity for image sets returned by Google Image Search
(Section 5.3),

• A multiple pose estimation task, where we improve the
detection of human poses in images from television shows
by incorporating a bias toward nonoverlapping predictions
(Section 6.4), and

• A news threading task, where we automatically extract
timelines of important news stories from a large corpus
by balancing intra-timeline coherence with inter-timeline
diversity (Section 6.6.4).

1.2 Outline

In this monograph we present general mathematical background on
DPPs along with a range of modeling extensions, efficient algorithms,
and theoretical results that aim to enable practical modeling and
learning. The material is organized as follows.

Section 2: Determinantal Point Processes. We begin with an
introduction to determinantal point processes tailored to the inter-
ests of the machine learning community. We focus on discrete DPPs,
emphasizing intuitions and including new, simplified proofs for some
theoretical results. We provide descriptions of known efficient inference
algorithms and characterize their computational properties.

Section 3: Representation and Algorithms. We describe a
decomposition of the DPP that makes explicit its fundamental trade-
off between quality and diversity. We compare the expressive power of
DPPs and MRFs, characterizing the trade-offs in terms of modeling
power and computational efficiency. We also introduce a dual repre-
sentation for DPPs, showing how it can be used to perform efficient
inference over large ground sets. When the data are high-dimensional
and dual inference is still too slow, we show that random projections
can be used to maintain a provably close approximation to the original
model while greatly reducing computational requirements.
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Section 4: Learning. We derive an efficient algorithm for learn-
ing the parameters of a quality model when the diversity model is
held fixed. We employ this learning algorithm to perform extractive
summarization of news text.

Section 5: k-DPPs. We present an extension of DPPs that allows
for explicit control over the number of items selected by the model.
We show not only that this extension solves an important practical
problem, but also that it increases expressive power: a k-DPP can
capture distributions that a standard DPP cannot. The extension to
k-DPPs necessitates new algorithms for efficient inference based on
recursions for the elementary symmetric polynomials. We validate the
new model experimentally on an image search task.

Section 6: Structured DPPs. We extend DPPs to model diverse
sets of structured items, such as sequences or trees, where there
are combinatorially many possible configurations. In this setting the
number of possible subsets is doubly exponential, presenting a daunting
computational challenge. However, we show that a factorization of the
quality and diversity models together with the dual representation for
DPPs makes efficient inference possible using second-order message
passing. We demonstrate structured DPPs on a toy geographical paths
problem, a still-image multiple pose estimation task, and two high-
dimensional text threading tasks.



2
Determinantal Point Processes

Determinantal point processes (DPPs) were first identified as a class
by Macchi [98], who called them “fermion processes” because they give
the distributions of fermion systems at thermal equilibrium. The Pauli
exclusion principle states that no two fermions can occupy the same
quantum state; as a consequence fermions exhibit what is known as the
“antibunching” effect. This repulsion is described precisely by a DPP.

In fact, years before Macchi gave them a general treatment,
specific DPPs appeared in major results in random matrix theory
[40, 41, 42, 58, 104], where they continue to play an important role
[36, 75]. Recently, DPPs have attracted a flurry of attention in the
mathematics community [13, 14, 15, 16, 21, 72, 73, 74, 116, 117, 131],
and much progress has been made in understanding their formal com-
binatorial and probabilistic properties. The term “determinantal” was
first used by Borodin and Olshanski [14], and has since become accepted
as standard. Many good mathematical surveys are now available
[12, 68, 97, 132, 133, 137, 145].

We begin with an overview of the aspects of DPPs most relevant to
the machine learning community, emphasizing intuitions, algorithms,
and computational properties.

129
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2.1 Definition

A point process P on a ground set Y is a probability measure over
“point patterns” or “point configurations” of Y, which are finite subsets
of Y. For instance, Y could be a continuous time interval during which
a scientist records the output of a brain electrode, with P({y1,y2,y3})
characterizing the likelihood of seeing neural spikes at times y1, y2,
and y3. Depending on the experiment, the spikes might tend to cluster
together, or they might occur independently, or they might tend to
spread out in time. P captures these correlations.

For the remainder of this monograph, we will focus on discrete,
finite point processes, where we assume without loss of generality that
Y = {1,2, . . . ,N}; in this setting we sometimes refer to elements of Y as
items. Much of our discussion extends to the continuous case, but the
discrete setting is computationally simpler and often more appropriate
for real-world data — e.g., in practice, the electrode voltage will only
be sampled at discrete intervals. The distinction will become even more
apparent when we apply our methods to Y with no natural continuous
interpretation, such as the set of documents in a corpus.

In the discrete case, a point process is simply a probability measure
on 2Y , the set of all subsets of Y. A sample from P might be the empty
set, the entirety of Y, or anything in between. P is called a determi-
nantal point process if, when Y is a random subset drawn according
to P, we have, for every A ⊆ Y,

P(A ⊆ Y ) = det(KA) (2.1)

for some real, symmetric N × N matrix K indexed by the elements of
Y.1 Here, KA ≡ [Kij ]i,j∈A denotes the restriction of K to the entries
indexed by elements of A, and we adopt det(K∅) = 1. Note that normal-
ization is unnecessary here, since we are defining marginal probabilities
that need not sum to 1.

Since P is a probability measure, all principal minors det(KA) of K
must be nonnegative, and thus K itself must be positive semidefinite.
It is possible to show in the same way that the eigenvalues of K are

1 In general, K need not be symmetric. However, in the interest of simplicity, we proceed
with this assumption; it is not a significant limitation for our purposes.
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bounded above by one using Equation (2.27), which we introduce later.
These requirements turn out to be sufficient: any K, 0 �K � I, defines
a DPP. This will be a consequence of Theorem 2.3.

We refer to K as the marginal kernel since it contains all the
information needed to compute the probability of any subset A being
included in Y . A few simple observations follow from Equation (2.1).
If A = {i} is a singleton, then we have

P(i ∈ Y ) = Kii. (2.2)

That is, the diagonal of K gives the marginal probabilities of inclusion
for individual elements of Y. Diagonal entries close to 1 correspond to
elements of Y that are almost always selected by the DPP. Furthermore,
if A = {i, j} is a two-element set, then

P(i, j ∈ Y ) =
∣∣∣∣Kii Kij

Kji Kjj

∣∣∣∣ (2.3)

= KiiKjj − KijKji (2.4)

= P(i ∈ Y )P(j ∈ Y ) − K2
ij . (2.5)

Thus, the off-diagonal elements determine the negative correlations
between pairs of elements: large values of Kij imply that i and j tend
not to co-occur.

Equation (2.5) demonstrates why DPPs are “diversifying”. If we
think of the entries of the marginal kernel as measurements of simi-
larity between pairs of elements in Y, then highly similar elements are
unlikely to appear together. If Kij =

√
KiiKjj , then i and j are “per-

fectly similar” and do not appear together almost surely. Conversely,
when K is diagonal there are no correlations and the elements appear
independently. Note that DPPs cannot represent distributions where
elements are more likely to co-occur than if they were independent:
correlations are always nonpositive.

Figure 2.1 shows the difference between sampling a set of points
in the plane using a DPP (with Kij inversely related to the distance
between points i and j), which leads to a relatively uniformly spread set
with good coverage, and sampling points independently, which results
in random clumping.
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Fig. 2.1 A set of points in the plane drawn from a DPP (left), and the same number of
points sampled independently using a Poisson point process (right).

2.1.1 Examples

In this monograph, our focus is on using DPPs to model real-world
data. However, many theoretical point processes turn out to be exactly
determinantal, which is one of the main reasons they have received so
much recent attention. In this section we briefly describe a few exam-
ples; some of them are quite remarkable on their own, and as a whole
they offer some intuition about the types of distributions that are real-
izable by DPPs. Technical details for each example can be found in the
accompanying reference.

Descents in random sequences [13] Given a sequence of N ran-
dom numbers drawn uniformly and independently from a finite set (say,
the digits 0–9), the locations in the sequence where the current num-
ber is less than the previous number form a subset of {2,3, . . . ,N}. This
subset is distributed as a determinantal point process. Intuitively, if the
current number is less than the previous number, it is probably not too
large, thus it becomes less likely that the next number will be smaller
yet. In this sense, the positions of decreases repel one another.

Nonintersecting random walks [73] Consider a set of k indepen-
dent, simple, symmetric random walks of length T on the integers.
That is, each walk is a sequence x1,x2, . . . ,xT where xi − xi+1 is either
−1 or +1 with equal probability. If we let the walks begin at posi-
tions x1

1,x
2
1, . . . ,x

k
1 and condition on the fact that they end at positions
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x1
T ,x

2
T , . . . ,x

k
T and do not intersect, then the positions x1

t ,x
2
t , . . . ,x

k
t at

any time t are a subset of Z and distributed according to a DPP.
Intuitively, if the random walks do not intersect, then at any time
step they are likely to be far apart.

Edges in random spanning trees [21] Let G be an arbitrary finite
graph with N edges, and let T be a random spanning tree chosen
uniformly from the set of all the spanning trees of G. The edges in
T form a subset of the edges of G that is distributed as a DPP. The
marginal kernel in this case is the transfer–impedance matrix, whose
entry Ke1e2 is the expected signed number of traversals of edge e2 when
a random walk begins at one endpoint of e1 and ends at the other (the
graph edges are first oriented arbitrarily). Thus, edges that are in some
sense “nearby” in G are similar according to K, and as a result less
likely to participate in a single uniformly chosen spanning tree. As
this example demonstrates, some DPPs assign zero probability to sets
whose cardinality is not equal to a particular k; in this case, k is the
number of nodes in the graph minus one — the number of edges in any
spanning tree. We will return to this issue in Section 5.

Eigenvalues of random matrices [58, 104] Let M be a random
matrix obtained by drawing every entry independently from the com-
plex normal distribution. This is the complex Ginibre ensemble. The
eigenvalues of M , which form a finite subset of the complex plane, are
distributed according to a DPP. If a Hermitian matrix is generated in
the corresponding way, drawing each diagonal entry from the normal
distribution and each pair of off-diagonal entries from the complex nor-
mal distribution, then we obtain the Gaussian unitary ensemble, and
the eigenvalues are now a DPP-distributed subset of the real line.

Aztec diamond tilings [74] The Aztec diamond is a diamond-
shaped union of lattice squares, as depicted in Figure 2.2(a). (Half
of the squares have been colored gray in a checkerboard pattern.) A
domino tiling is a perfect cover of the Aztec diamond using 2 × 1 rect-
angles, as in Figure 2.2(b). Suppose that we draw a tiling uniformly
at random from among all possible tilings. (The number of tilings is



134 Determinantal Point Processes

Fig. 2.2 Aztec diamonds.

known to be exponential in the width of the diamond.) We can identify
this tiling with the subset of the squares that are (a) painted gray in
the checkerboard pattern and (b) covered by the left half of a horizontal
tile or the bottom half of a vertical tile (see Figure 2.2(c)). This subset
is distributed as a DPP.

2.2 L-ensembles

For the purposes of modeling real data, it is useful to slightly restrict
the class of DPPs by focusing on L-ensembles. First introduced by
Borodin and Rains [15], an L-ensemble defines a DPP not through the
marginal kernel K, but through a real, symmetric matrix L indexed by
the elements of Y:

PL(Y = Y ) ∝ det(LY ). (2.6)

Whereas Equation (2.1) gave the marginal probabilities of inclusion for
subsets A, Equation (2.6) directly specifies the atomic probabilities for
every possible instantiation of Y . As for K, it is easy to see that L
must be positive semidefinite. However, since Equation (2.6) is only a
statement of proportionality, the eigenvalues of L need not be less than
one; any positive semidefinite L defines an L-ensemble. The required
normalization constant can be given in closed form due to the fact that∑

Y⊆Y det(LY ) = det(L + I), where I is the N × N identity matrix.
This is a special case of the following theorem.
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Theorem 2.1. For any A ⊆ Y,∑
A⊆Y⊆Y

det(LY ) = det(L + IĀ), (2.7)

where IĀ is the diagonal matrix with ones in the diagonal positions
corresponding to elements of Ā = Y − A, and zeros everywhere else.

Proof. Suppose that A = Y; then Equation (2.7) holds trivially. Now
suppose inductively that the theorem holds whenever Ā has cardinality
less than k. Given A such that |Ā| = k > 0, let i be an element of Y
where i ∈ Ā. Splitting blockwise according to the partition Y = {i} ∪
Y − {i}, we can write

L + IĀ =
(
Lii + 1 Līi
Līi LY−{i} + IY−{i}−A

)
, (2.8)

where Līi is the subcolumn of the i-th column of L whose rows corre-
spond to ī, and similarly for Līi. By multilinearity of the determinant,
then,

det(L + IĀ) =
∣∣∣∣Lii Līi
Līi LY−{i} + IY−{i}−A

∣∣∣∣ +
∣∣∣∣1 0
Līi LY−{i} + IY−{i}−A

∣∣∣∣
(2.9)

= det(L + I
A∪{i}) + det(LY−{i} + IY−{i}−A). (2.10)

We can now apply the inductive hypothesis separately to each term,
giving

det(L + IĀ) =
∑

A∪{i}⊆Y⊆Y
det(LY ) +

∑
A⊆Y⊆Y−{i}

det(LY ) (2.11)

=
∑

A⊆Y⊆Y
det(LY ), (2.12)

where we observe that every Y either contains i and is included only in
the first sum, or does not contain i and is included only in the second
sum.
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Thus we have

PL(Y = Y ) =
det(LY )

det(L + I)
. (2.13)

As a shorthand, we will write PL(Y ) instead of PL(Y = Y ) when the
meaning is clear.

We can write a version of Equation (2.5) for L-ensembles, showing
that if L is a measure of similarity then diversity is preferred:

PL({i, j}) ∝ PL({i})PL({j}) −
(

Lij
det(L + I)

)2

. (2.14)

In this case we are reasoning about the full contents of Y rather than
its marginals, but the intuition is essentially the same. Furthermore,
we have the following result of [98].

Theorem 2.2. An L-ensemble is a DPP, and its marginal kernel is

K = L(L + I)−1 = I − (L + I)−1. (2.15)

Proof. Using Theorem 2.1, the marginal probability of a set A is

PL(A ⊆ Y ) =

∑
A⊆Y⊆Y det(LY )∑
Y⊆Y det(LY )

(2.16)

=
det(L + IĀ)
det(L + I)

(2.17)

= det((L + IĀ)(L + I)−1). (2.18)

We can use the fact that L(L + I)−1 = I − (L + I)−1 to simplify and
obtain

PL(A ⊆ Y ) = det(IĀ(L + I)−1 + I − (L + I)−1) (2.19)

= det(I − IA(L + I)−1) (2.20)

= det(IĀ + IAK), (2.21)

where we let K = I − (L + I)−1. Now, we observe that left multiplica-
tion by IA zeros out all the rows of a matrix except those corresponding
to A. Therefore we can split blockwise using the partition Y = Ā ∪ A
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to get

det(IĀ + IAK) =

∣∣∣∣∣I|Ā|×|Ā| 0
KAĀ KA

∣∣∣∣∣ (2.22)

= det(KA). (2.23)

Note that K can be computed from an eigendecomposition of L =∑N
n=1λnvnv

�
n by a simple rescaling of eigenvalues:

K =
N∑
n=1

λn
λn + 1

vnv
�
n . (2.24)

Conversely, we can ask when a DPP with marginal kernel K is also an
L-ensemble. By inverting Equation (2.15), we have

L = K(I − K)−1, (2.25)

and again the computation can be performed by eigendecomposition.
However, while the inverse in Equation (2.15) always exists due to the
positive coefficient on the identity matrix, the inverse in Equation (2.25)
may not. In particular, when any eigenvalue of K achieves the upper
bound of 1, the DPP is not an L-ensemble. We will see later that the
existence of the inverse in Equation (2.25) is equivalent to P giving
nonzero probability to the empty set. (This is somewhat analogous to
the positive probability assumption in the Hammersley–Clifford the-
orem for Markov random fields.) This is not a major restriction, for
two reasons. First, when modeling real data we must typically allocate
some nonzero probability for rare or noisy events, so when cardinality
is one of the aspects we wish to model, the condition is not unreason-
able. Second, we will show in Section 5 how to control the cardinality
of samples drawn from the DPP, thus sidestepping the representational
limits of L-ensembles.

Modulo the restriction described above, K and L offer alternative
representations of DPPs. Under both representations, subsets that have
higher diversity, as measured by the corresponding kernel, have higher
likelihood. However, while K gives marginal probabilities, L-ensembles
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directly model the atomic probabilities of observing each subset of Y,
which offers an appealing target for optimization. Furthermore, L need
only be positive semidefinite, while the eigenvalues of K are bounded
above. For these reasons we will focus our modeling efforts on DPPs
represented as L-ensembles.

2.2.1 Geometry

Determinants have an intuitive geometric interpretation. Let B be a
D × N matrix such that L = B�B. (Such a B can always be found for
D ≤ N when L is positive semidefinite.) Denote the columns of B by
Bi for i = 1,2, . . . ,N . Then:

PL(Y ) ∝ det(LY ) = Vol2({Bi}i∈Y ), (2.26)

where the right-hand side is the squared |Y |-dimensional volume of the
parallelepiped spanned by the columns of B corresponding to elements
in Y .

Intuitively, we can think of the columns of B as feature vectors
describing the elements of Y. Then the kernel L measures similarity
using dot products between feature vectors, and Equation (2.26) says
that the probability assigned by a DPP to a set Y is related to the
volume spanned by its associated feature vectors. This is illustrated in
Figure 2.3.

From this intuition we can verify several important DPP properties.
Diverse sets are more probable because their feature vectors are more
orthogonal, and hence span larger volumes. Items with parallel feature
vectors are selected together with probability zero, since their feature
vectors define a degenerate parallelepiped. All else being equal, items
with large-magnitude feature vectors are more likely to appear, because
they multiply the spanned volumes for sets containing them.

We will revisit these intuitions in Section 3.1, where we decompose
the kernel L so as to separately model the direction and magnitude of
the vectors Bi.

2.3 Properties

In this section we review several useful properties of DPPs.
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Fig. 2.3 A geometric view of DPPs: each vector corresponds to an element of Y. (a) The
probability of a subset Y is the square of the volume spanned by its associated feature
vectors. (b) As the magnitude of an item’s feature vector increases, so do the probabilities of
sets containing that item. (c) As the similarity between two items increases, the probabilities
of sets containing both of them decrease.

Restriction If Y is distributed as a DPP with marginal kernel K,
then Y ∩ A, where A ⊆ Y, is also distributed as a DPP, with marginal
kernel KA.

Complement If Y is distributed as a DPP with marginal kernel K,
then Y − Y is also distributed as a DPP, with marginal kernel K̄ =
I − K. In particular, we have

P(A ∩ Y = ∅) = det(K̄A) = det(I − KA), (2.27)

where I indicates the identity matrix of appropriate size. It may seem
counterintuitive that the complement of a diversifying process should
also encourage diversity. However, it is easy to see that

P(i, j 
∈ Y ) = 1 − P(i ∈ Y ) − P(j ∈ Y ) + P(i, j ∈ Y ) (2.28)

≤ 1 − P(i ∈ Y ) − P(j ∈ Y )

+P(i ∈ Y )P(j ∈ Y ) (2.29)

= P(i 
∈ Y ) + P(j 
∈ Y ) − 1

+(1 − P(i 
∈ Y ))(1 − P(j 
∈ Y )) (2.30)

= P(i 
∈ Y )P(j 
∈ Y ), (2.31)

where the inequality follows from Equation (2.5).
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Domination IfK �K ′, that is,K ′ − K is positive semidefinite, then
for all A ⊆ Y we have

det(KA) ≤ det(K ′
A). (2.32)

In other words, the DPP defined by K ′ is larger than the one defined
by K in the sense that it assigns higher marginal probabilities to every
set A. An analogous result fails to hold for L due to the normalization
constant.

Scaling If K = γK ′ for some 0 ≤ γ < 1, then for all A ⊆ Y we have

det(KA) = γ|A| det(K ′
A). (2.33)

It is easy to see that K defines the distribution obtained by taking a
random set distributed according to the DPP with marginal kernel K ′,
and then independently deleting each of its elements with probability
1 − γ.

Cardinality Let λ1,λ2, . . . ,λN be the eigenvalues of L. Then |Y | is
distributed as the number of successes in N Bernoulli trials, where trial
n succeeds with probability λn

λn+1 . This fact follows from Theorem 2.3,
which we prove in the next section. One immediate consequence is
that |Y | cannot be larger than rank(L). More generally, the expected
cardinality of Y is

E[|Y |] =
N∑
n=1

λn
λn + 1

= tr(K), (2.34)

and the variance is

Var(|Y |) =
N∑
n=1

λn
(λn + 1)2

. (2.35)

Note that, by Equation (2.15), λ1
λ1+1 ,

λ2
λ2+1 , . . . ,

λN
λN+1 are the eigenvalues

of K. Figure 2.4 shows a plot of the function f(λ) = λ
λ+1 . It is easy

to see from this why the class of L-ensembles does not include DPPs
where the empty set has probability zero — at least one of the Bernoulli
trials would need to always succeed, and in turn one or more of the
eigenvalues of L would be infinite.
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Fig. 2.4 The mapping between eigenvalues of L and K.

In some instances, the sum of Bernoullis may be an appropriate
model for uncertain cardinality in real-world data, for instance when
identifying objects in images where the number of objects is unknown
in advance. In other situations, it may be more practical to fix the
cardinality of Y up front, for instance when a set of exactly ten search
results is desired, or to replace the sum of Bernoullis with an alternative
cardinality model. We show how these goals can be can be achieved in
Section 5.

2.4 Inference

One of the primary advantages of DPPs is that, although the number
of possible realizations of Y is exponential in N , many types of infer-
ence can be performed in polynomial time. In this section we review
the inference questions that can (and cannot) be answered efficiently.
We also discuss the empirical practicality of the associated computa-
tions and algorithms, estimating the largest values of N that can be
handled at interactive speeds (within 2–3 seconds) as well as under
more generous time and memory constraints. The reference machine
used for estimating real-world performance has eight Intel Xeon E5450
3Ghz cores and 32GB of memory.

2.4.1 Normalization

As we have already seen, the partition function, despite being a
sum over 2N terms, can be written in closed form as det(L + I).
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Determinants of N × N matrices can be computed through matrix
decomposition in O(N3) time, or reduced to matrix multiplication
for better asymptotic performance. The Coppersmith–Winograd algo-
rithm, for example, can be used to compute determinants in about
O(N2.376) time. Going forward, we will use ω to denote the exponent
of whatever matrix multiplication algorithm is used.

Practically speaking, modern computers can calculate determinants
up to N ≈ 5,000 at interactive speeds, or up to N ≈ 40,000 in about
5 minutes. When N grows much larger, the memory required simply to
store the matrix becomes limiting. (Sparse storage of larger matrices is
possible, but computing determinants remains prohibitively expensive
unless the level of sparsity is extreme.)

2.4.2 Marginalization

The marginal probability of any set of items A can be computed using
the marginal kernel as in Equation (2.1). From Equation (2.27) we can
also compute the marginal probability that none of the elements in
A appear. (We will see below how marginal probabilities of arbitrary
configurations can be computed using conditional DPPs.)

If the DPP is specified as an L-ensemble, then the computational
bottleneck for marginalization is the computation of K. The dominant
operation is the matrix inversion, which requires at least O(Nω) time
by reduction to multiplication, or O(N3) using Gauss–Jordan elimina-
tion or various matrix decompositions, such as the eigendecomposition
method proposed in Section 2.2. Since an eigendecomposition of the
kernel will be central to sampling, the latter approach is often the
most practical when working with DPPs.

Matrices up to N ≈ 2,000 can be inverted at interactive speeds, and
problems up to N ≈ 20,000 can be completed in about 10 minutes.

2.4.3 Conditioning

It is easy to condition a DPP on the event that none of the
elements in a set A appear. For B ⊆ Y not intersecting with A
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we have

PL(Y = B | A ∩ Y = ∅) =
PL(Y = B)
PL(A ∩ Y = ∅) (2.36)

=
det(LB)∑

B′:B′∩A=∅ det(LB′)
(2.37)

=
det(LB)

det(LĀ + I)
, (2.38)

where LĀ is the restriction of L to the rows and columns indexed by
elements in Y − A. In other words, the conditional distribution (over
subsets of Y − A) is itself a DPP, and its kernel LĀ is obtained by
simply dropping the rows and columns of L that correspond to elements
in A.

We can also condition a DPP on the event that all of the elements
in a set A are observed. For B not intersecting with A we have

PL(Y = A ∪ B | A ⊆ Y ) =
PL(Y = A ∪ B)
PL(A ⊆ Y )

(2.39)

=
det(LA∪B)∑

B′:B′∩A=∅ det(LA∪B′)
(2.40)

=
det(LA∪B)
det(L + IĀ)

, (2.41)

where IĀ is the matrix with ones in the diagonal entries indexed by
elements of Y − A and zeros everywhere else. Though it is not imme-
diately obvious, Borodin and Rains [15] showed that this conditional
distribution (over subsets of Y − A) is again a DPP, with a kernel
given by

LA =
([

(L + IĀ)−1]
Ā

)−1 − I. (2.42)

(Following the N × N inversion, the matrix is restricted to rows and
columns indexed by elements in Y − A, then inverted again.) It is easy
to show that the inverses exist if and only if the probability of A appear-
ing is nonzero.

Combining Equations (2.38) and (2.41), we can write the conditional
DPP given an arbitrary combination of appearing and nonappearing
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elements:

PL(Y = Ain ∪ B | Ain ⊆ Y ,Aout ∩ Y = ∅) =
det(LAin∪B)

det(LĀout + IĀin)
.

(2.43)

The corresponding kernel is

LA
in

Āout = ([(LĀout + IĀin)−1]Āin)−1 − I. (2.44)

Thus, the class of DPPs is closed under most natural conditioning
operations.

General marginals These formulas also allow us to compute
arbitrary marginals. For example, applying Equation (2.15) to
Equation (2.42) yields the marginal kernel for the conditional DPP
given the appearance of A:

KA = I − [(L + IĀ)−1]
Ā
. (2.45)

Thus we have

P(B ⊆ Y |A ⊆ Y ) = det(KA
B). (2.46)

(Note that KA is indexed by elements of Y − A, so this is only defined
when A and B are disjoint.) Using Equation (2.27) for the complement
of a DPP, we can now compute the marginal probability of any partial
assignment, i.e.,

P(A ⊆ Y ,B ∩ Y = ∅) = P(A ⊆ Y )P(B ∩ Y = ∅|A ⊆ Y ) (2.47)

= det(KA)det(I − KA
B). (2.48)

Computing conditional DPP kernels in general is asymptotically
as expensive as the dominant matrix inversion, although in some cases
(conditioning only on nonappearance), the inversion is not necessary. In
any case, conditioning is at most a small constant factor more expensive
than marginalization.

2.4.4 Sampling

Algorithm 1, due to Hough et al. [68], gives an efficient algorithm for
sampling a configuration Y from a DPP. The input to the algorithm
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Algorithm 1 Sampling from a DPP
Input: eigendecomposition {(vn,λn)}Nn=1 of L
J ← ∅
for n = 1,2, . . . ,N do
J ← J ∪ {n} with prob. λn

λn+1
end for
V ← {vn}n∈J
Y ← ∅
while |V | > 0 do

Select i from Y with Pr(i) = 1
|V |
∑

v∈V (v�ei)2

Y ← Y ∪ i
V ← V⊥, an orthonormal basis for the subspace of V orthogonal
to ei

end while
Output: Y

is an eigendecomposition of the DPP kernel L. Note that ei is the i-th
standard basis N -vector, which is all zeros except for a one in the i-th
position. We will prove the following theorem.

Theorem 2.3. Let L =
∑N

n=1λnvnv
�
n be an orthonormal eigendecom-

position of a positive semidefinite matrix L. Then Algorithm 1 samples
Y ∼ PL.

Algorithm 1 has two main loops, corresponding to two phases of
sampling. In the first phase, a subset of the eigenvectors is selected at
random, where the probability of selecting each eigenvector depends on
its associated eigenvalue. In the second phase, a sample Y is produced
based on the selected vectors. Note that on each iteration of the second
loop, the cardinality of Y increases by one and the dimension of V is
reduced by one. Since the initial dimension of V is simply the number
of selected eigenvectors (|J |), Theorem 2.3 has the previously stated
corollary that the cardinality of a random sample is distributed as a
sum of Bernoulli variables.
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To prove Theorem 2.3 we will first show that a DPP can be
expressed as a mixture of simpler, elementary DPPs. We will then show
that the first phase chooses an elementary DPP according to its mixing
coefficient, while the second phase samples from the elementary DPP
chosen in phase one.

Definition 2.1. A DPP is called elementary if every eigenvalue of
its marginal kernel is in {0,1}. We write PV , where V is a set of
orthonormal vectors, to denote an elementary DPP with marginal ker-
nel KV =

∑
v∈V vv�.

We introduce the term “elementary” here; Hough et al. [68] refer
to elementary DPPs as determinantal projection processes, since KV

is an orthonormal projection matrix to the subspace spanned by V .
Note that, due to Equation (2.25), elementary DPPs are not generally
L-ensembles. We start with a technical lemma.

Lemma 2.4. Let Wn for n = 1,2, . . . ,N be an arbitrary sequence of
k × k rank-one matrices, and let (Wn)i denote the i-th column of Wn.
Let WJ =

∑
n∈JWn. Then

det(WJ) =
∑

n1,n2,...,nk∈J,
distinct

det([(Wn1)1(Wn2)2 . . .(Wnk
)k]). (2.49)

Proof. Expanding on the first column of WJ using the multilinearity
of the determinant,

det(WJ) =
∑
n∈J

det([(Wn)1(WJ)2 . . .(WJ)k]), (2.50)

and, applying the same operation inductively to all columns,

det(WJ) =
∑

n1,n2,...,nk∈J
det([(Wn1)1(Wn2)2 . . .(Wnk

)k]). (2.51)

Since Wn has rank one, the determinant of any matrix containing two
or more columns of Wn is zero; thus the terms in the sum vanish unless
n1,n2, . . . ,nk are distinct.
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Lemma 2.5. A DPP with kernel L =
∑N

n=1λnvnv
�
n is a mixture of

elementary DPPs:

PL =
1

det(L + I)

∑
J⊆{1,2,...,N}

PVJ
∏
n∈J

λn, (2.52)

where VJ denotes the set {vn}n∈J .

Proof. Consider an arbitrary set A, with k = |A|. Let Wn = [vnv�
n ]A

for n = 1,2, . . . ,N ; note that all of the Wn have rank one. From the
definition of KVJ , the mixture distribution on the right-hand side of
Equation (2.52) gives the following expression for the marginal proba-
bility of A:

1
det(L + I)

∑
J⊆{1,2,...,N}

det

(∑
n∈J

Wn

)∏
n∈J

λn. (2.53)

Applying Lemma 2.4, this is equal to
1

det(L + I)

∑
J⊆{1,2,...,N}

∑
n1,...,nk∈J,

distinct

det([(Wn1)1 . . .(Wnk
)k])
∏
n∈J

λn

(2.54)

=
1

det(L + I)

N∑
n1,...,nk=1,

distinct

×det([(Wn1)1 . . .(Wnk
)k])

∑
J⊇{n1,...,nk}

∏
n∈J

λn (2.55)

=
1

det(L + I)

N∑
n1,...,nk=1,

distinct

det([(Wn1)1 . . .(Wnk
)k])

× λn1

λn1 + 1
· · · λnk

λnk
+ 1

N∏
n=1

(λn + 1) (2.56)

=
N∑

n1,...,nk=1,
distinct

det
([

λn1

λn1 + 1
(Wn1)1 . . .

λnk

λnk
+ 1

(Wnk
)k

])
, (2.57)
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using the fact that det(L + I) =
∏N
n=1(λn + 1). Applying Lemma 2.4 in

reverse and then the definition of K in terms of the eigendecomposition
of L, we have that the marginal probability of A given by the mixture is

det

(
N∑
n=1

λn
λn + 1

Wn

)
= det(KA). (2.58)

Since the two distributions agree on all marginals, they are equal.

Next, we show that elementary DPPs have fixed cardinality.

Lemma 2.6. If Y is drawn according to an elementary DPP PV , then
|Y | = |V | with probability one.

Proof. Since KV has rank |V |, PV (Y ⊆ Y ) = 0 whenever |Y | > |V |, so
|Y | ≤ |V |. But we also have

E[|Y |] = E

[
N∑
n=1

I(n ∈ Y )

]
(2.59)

=
N∑
n=1

E [I(n ∈ Y )] (2.60)

=
N∑
n=1

Knn = tr(K) = |V |. (2.61)

Thus |Y | = |V | almost surely.

We can now prove the theorem.

Proof of Theorem 2.3. Lemma 2.5 says that the mixture weight of PVJ

is given by the product of the eigenvalues λn corresponding to the
eigenvectors vn ∈ VJ , normalized by det(L + I) =

∏N
n=1(λn + 1). This

shows that the first loop of Algorithm 1 selects an elementary DPP PV
with probability equal to its mixture component. All that remains is
to show that the second loop samples Y ∼ PV .

Let B represent the matrix whose rows are the eigenvectors in V ,
so that KV = B�B. Using the geometric interpretation of determi-
nants introduced in Section 2.2.1, det(KV

Y ) is equal to the squared
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volume of the parallelepiped spanned by {Bi}i∈Y . Note that since V is
an orthonormal set, Bi is just the projection of ei onto the subspace
spanned by V .

Let k = |V |. By Lemma 2.6 and symmetry, we can consider without
loss of generality a single Y = {1,2, . . . ,k}. Using the fact that any vec-
tor both in the span of V and perpendicular to ei is also perpendicular
to the projection of ei onto the span of V , by the base × height formula
for the volume of a parallelepiped we have

Vol({Bi}i∈Y ) = ‖B1‖Vol({Proj⊥e1
Bi}ki=2), (2.62)

where Proj⊥e1
is the projection operator onto the subspace orthogonal

to e1. Proceeding inductively,

Vol({Bi}i∈Y ) = ‖B1‖‖Proj⊥e1
B2‖· · ·‖Proj⊥e1,...,ek−1

Bk‖. (2.63)

Assume that, as iteration j of the second loop in Algorithm 1 begins,
we have already selected y1 = 1,y2 = 2, . . . ,yj−1 = j − 1. Then V in the
algorithm has been updated to an orthonormal basis for the subspace
of the original V perpendicular to e1, . . . ,ej−1, and the probability of
choosing yj = j is exactly

1
|V |
∑
v∈V

(v�ej)2 =
1

k − j + 1
‖Proj⊥e1,...,ej−1

Bj‖2. (2.64)

Therefore, the probability of selecting the sequence 1,2, . . . ,k is

1
k!
‖B1‖2‖Proj⊥e1

B2‖2 · · ·‖Proj⊥e1,...,ek−1
Bk‖2 =

1
k!

Vol2({Bi}i∈Y ).

(2.65)
Since volume is symmetric, the argument holds identically for all of the
k! orderings of Y . Thus the total probability that Algorithm 1 selects
Y is det(KV

Y ).

Corollary 2.7. Algorithm 1 generates Y in uniformly random order.

Discussion To get a feel for the sampling algorithm, it is useful to
visualize the distributions used to select i at each iteration, and to see
how they are influenced by previously chosen items. Figure 2.5(a) shows
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Fig. 2.5 Sampling DPP over one-dimensional (top) and two-dimensional (bottom) particle
positions. Red circles indicate already selected positions. On the bottom, lighter color cor-
responds to higher probability. The DPP naturally reduces the probabilities for positions
that are similar to those already selected.

this progression for a simple DPP where Y is a finely sampled grid of
points in [0,1], and the kernel is such that points are more similar the
closer together they are. Initially, the eigenvectors V give rise to a fairly
uniform distribution over points in Y, but as each successive point is
selected and V is updated, the distribution shifts to avoid points near
those already chosen. Figure 2.5(b) shows a similar progression for a
DPP over points in the unit square.

The sampling algorithm also offers an interesting analogy to clus-
tering. If we think of the eigenvectors of L as representing soft clusters,
and the eigenvalues as representing their strengths — the way we do
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for the eigenvectors and eigenvalues of the Laplacian matrix in spectral
clustering — then a DPP can be seen as performing a clustering of
the elements in Y, selecting a random subset of clusters based on their
strength, and then choosing one element per selected cluster. Of course,
the elements are not chosen independently and cannot be identified
with specific clusters; instead, the second loop of Algorithm 1 coordi-
nates the choices in a particular way, accounting for overlap between
the eigenvectors.

Algorithm 1 runs in time O(Nk3), where k = |V | is the number of
eigenvectors selected in phase one. The most expensive operation is the
O(Nk2) Gram–Schmidt orthonormalization required to compute V⊥. If
k is large, this can be reasonably expensive, but for most applications
we do not want high-cardinality DPPs. (And if we want very high-
cardinality DPPs, we can potentially save time by using Equation (2.27)
to sample the complement instead.) In practice, the initial eigendecom-
position of L is often the computational bottleneck, requiring O(N3)
time. Modern multicore machines can compute eigendecompositions up
to N ≈ 1,000 at interactive speeds of a few seconds, or larger problems
up to N ≈ 10,000 in around 10 minutes. In some instances, it may be
cheaper to compute only the top k eigenvectors; since phase one tends
to choose eigenvectors with large eigenvalues anyway, this can be a
reasonable approximation when the kernel is expected to be low rank.
Note that when multiple samples are desired, the eigendecomposition
needs to be performed only once.

Deshpande and Rademacher [35] recently proposed a (1 − ε)-
approximate algorithm for sampling that runs in time O(N2 logN k2

ε2
+

N logωN k2ω+1

ε2ω log(kε logN)) when L is already decomposed as a Gram
matrix, L = B�B. When B is known but an eigendecomposition is not
(and N is sufficiently large), this may be significantly faster than the
exact algorithm.

2.4.5 Finding the Mode

Finding the mode of a DPP — that is, finding the set Y ⊆ Y that
maximizes PL(Y ) — is NP-hard. In conditional models, this problem is
sometimes referred to as maximum a posteriori (or MAP) inference, and
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it is also NP-hard for most general structured models such as Markov
random fields. Hardness was first shown for DPPs by Ko et al. [77],
who studied the closely-related maximum entropy sampling problem:
the entropy of a set of jointly Gaussian random variables is given (up
to constants) by the log-determinant of their covariance matrix; thus
finding the maximum entropy subset of those variables requires finding
the principal covariance submatrix with maximum determinant. Here,
we adapt the argument of Çivril and Magdon-Ismail [28], who studied
the problem of finding maximum-volume submatrices.

Theorem 2.8. Let dpp-mode be the optimization problem of finding,
for a positive semidefinite N × N input matrix L indexed by elements
of Y, the maximum value of det(LY ) over all Y ⊆ Y. dpp-mode is NP-
hard, and furthermore it is NP-hard even to approximate dpp-mode
to a factor of 8

9 + ε.

Proof. We reduce from exact 3-cover (X3C). An instance of X3C is a
set S and a collection C of three-element subsets of S; the problem is to
decide whether there is a subcollection C ′ ⊆ C such that every element
of S appears exactly once in C ′ (that is, C ′ is an exact 3-cover). X3C
is known to be NP-complete.

The reduction is as follows. Let Y = {1,2, . . . , |C|}, and let B be an
|S| × |C| matrix where Bsi = 1√

3
if Ci contains s ∈ S and zero other-

wise. Define L = γB�B, where 1 < γ ≤ 9
8 . Note that the diagonal of L

is constant and equal to γ, and an off-diagonal entry Lij is zero if and
only if Ci and Cj do not intersect. L is positive semidefinite by con-
struction, and the reduction requires only polynomial time. Let k = |S|

3 .
We will show that the maximum value of det(LY ) is greater than γk−1

if and only if C contains an exact 3-cover of S.
(←) If C ′ ⊆ C is an exact 3-cover of S, then it must contain exactly

k 3-sets. Letting Y be the set of indices in C ′, we have LY = γI, and
thus its determinant is γk > γk−1.

(→) Suppose there is no 3-cover of S in C. Let Y be an arbitrary
subset of Y. If |Y | < k, then

det(LY ) ≤
∏
i∈Y

Lii = γ|Y | ≤ γk−1. (2.66)
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Now suppose |Y | ≥ k, and assume without loss of generality that Y =
{1,2, . . . , |Y |}. We have LY = γB�

Y BY , and

det(LY ) = γ|Y |Vol2({Bi}i∈Y ). (2.67)

By the base × height formula,

Vol({Bi}i∈Y ) = ‖B1‖‖Proj⊥B1
B2‖· · ·‖Proj⊥B1,...,B|Y |−1

B|Y |‖. (2.68)

Note that, since the columns of B are normalized, each term in the
product is at most one. Furthermore, at least |Y | − k + 1 of the terms
must be strictly less than one, because otherwise there would be k

orthogonal columns, which would correspond to a 3-cover. By the con-
struction of B, if two columns Bi and Bj are not orthogonal then Ci
and Cj overlap in at least one of the three elements, so we have

‖Proj⊥Bj
Bi‖ = ‖Bi − (B�

i Bj)Bj‖ (2.69)

≤
∥∥∥∥Bi − 1

3
Bj

∥∥∥∥ (2.70)

≤
√

8
9
. (2.71)

Therefore,

det(LY ) ≤ γ|Y |
(

8
9

)|Y |−k+1

(2.72)

≤ γk−1, (2.73)

since γ ≤ 9
8 .

We have shown that the existence of a 3-cover implies that the
optimal value of dpp-mode is at least γk, while the optimal value
cannot be more than γk−1 if there is no 3-cover. Thus any algorithm
that can approximate dpp-mode to better than a factor of 1

γ can be
used to solve X3C in polynomial time. We can choose γ = 9

8 to show
that an approximation ratio of 8

9 + ε is NP-hard.

Since there are only |C| possible cardinalities for Y , Theorem 2.8
shows that dpp-mode is NP-hard even under cardinality constraints.

Ko et al. [77] propose an exact, exponential branch-and-bound
algorithm for finding the mode using greedy heuristics to build
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candidate sets; they tested their algorithm on problems up to N = 75,
successfully finding optimal solutions in up to about an hour. Modern
computers are likely a few orders of magnitude faster; however, this
algorithm is still probably impractical for applications with large N .
Çivril and Magdon-Ismail [28] propose an efficient greedy algorithm
for finding a set of size k, and prove that it achieves an approximation
ratio of O( 1

k!). While this guarantee is relatively poor for all but very
small k, in practice the results may be useful nonetheless.

Submodularity PL is log-submodular; that is,

logPL(Y ∪ {i}) − logPL(Y ) ≥ logPL(Y ′ ∪ {i}) − logPL(Y ′) (2.74)

whenever Y ⊆ Y ′ ⊆ Y − {i}. Intuitively, adding elements to Y yields
diminishing returns as Y gets larger. (This is easy to show by a volume
argument.) Submodular functions can be minimized in polynomial time
[127], and many results exist for approximately maximizing monotone
submodular functions, which have the special property that supersets
always have higher function values than their subsets [46, 53, 110]. In
Section 4.2.1 we will discuss how these kinds of greedy algorithms can
be adapted for DPPs. However, in general PL is highly nonmonotone,
since the addition of even a single element can decrease the probability
to zero.

Recently, Feige et al. [47] showed that even nonmonotone submodu-
lar functions can be approximately maximized in polynomial time using
a local search algorithm, and a growing body of research has focused
on extending this result in a variety of ways [25, 48, 49, 56, 90, 153]. In
our recent work we showed how the computational structure of DPPs
gives rise to a particularly efficient variant of these methods [81].

2.5 Related Processes

Historically, a wide variety of point process models have been proposed
and applied to applications involving diverse subsets, particularly in
settings where the items can be seen as points in a physical space
and diversity is taken to mean some sort of “spreading” behavior.
However, DPPs are essentially unique among this class in having effi-
cient and exact algorithms for probabilistic inference, which is why
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they are particularly appealing models for machine learning appli-
cations. In this section we briefly survey the wider world of point
processes and discuss the computational properties of alternative mod-
els; we will focus on point processes that lead to what is variously
described as diversity, repulsion, (over)dispersion, regularity, order, and
inhibition.

2.5.1 Poisson Point Processes

Perhaps the most fundamental point process is the Poisson point
process, which is depicted on the right side of Figure 2.1 [32]. While
defined for continuous Y, in the discrete setting the Poisson point pro-
cess can be simulated by flipping a coin independently for each item,
and including those items for which the coin comes up heads. Formally,

P(Y = Y ) =
∏
i∈Y

pi
∏
i�∈Y

(1 − pi), (2.75)

where pi ∈ [0,1] is the bias of the i-th coin. The process is called sta-
tionary when pi does not depend on i; in a spatial setting this means
that no region has higher density than any other region.

A random set Y distributed as a Poisson point process has the
property that whenever A and B are disjoint subsets of Y, the ran-
dom variables Y ∩ A and Y ∩ B are independent; that is, the points
in Y are not correlated. It is easy to see that DPPs generalize Poisson
point processes by choosing the marginal kernel K with Kii = pi
and Kij = 0, i 
= j. This implies that inference for Poisson point pro-
cesses is at least as efficient as for DPPs; in fact, it is more efficient,
since for instance it is easy to compute the most likely configura-
tion. However, since Poisson point processes do not model correlations
between variables, they are rather uninteresting for most real-world
applications.

Addressing this weakness, various procedural modifications of the
Poisson process have been proposed in order to introduce correlations
between items. While such constructions can be simple and intuitive,
leading to straightforward sampling algorithms, they tend to make gen-
eral statistical inference difficult.
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Matérn repulsive processes Matérn [100, 101] proposed a set of
techniques for thinning Poisson point processes in order to induce a
type of repulsion when the items are embedded in a Euclidean space.
Type I process is obtained from a Poisson set Y by removing all items
in Y that lie within some radius of another item in Y . That is, if two
items are close to each other, they are both removed; as a result all
items in the final process are spaced at least a fixed distance apart.
Type II Matérn repulsive process, designed to achieve the same min-
imum distance property while keeping more items, begins by inde-
pendently assigning each item in Y a uniformly random “time” in
[0,1]. Then, any item within a given radius of a point having a smaller
time value is removed. Under this construction, when two items are
close to each other only the later one is removed. Still, an item may
be removed due to its proximity with an earlier item that was itself
removed. This leads to Type III process, which proceeds dynamically,
eliminating items in time order whenever an earlier point which has
not been removed lies within the radius.

Inference for the Matérn processes is computationally daunting.
First- and second-order moments can be computed for Types I and II,
but in those cases computing the likelihood of a set Y is seemingly
intractable [106]. Recent work by Huber and Wolpert [69] shows that
it is possible to compute likelihood for certain restricted Type III pro-
cesses, but computing moments cannot be done in closed form. In the
general case, likelihood for Type III processes must be estimated using
an expensive Markov chain Monte Carlo algorithm.

The Matérn processes are called “hard-core” because they strictly
enforce a minimum radius between selected items. While this property
leads to one kind of diversity, it is somewhat limited, and due to the
procedural definition it is difficult to characterize the side effects of
the thinning process in a general way. Stoyan and Stoyan [138] con-
sidered an extension where the radius is itself chosen randomly, which
may be more natural for certain settings, but it does not alleviate the
computational issues.

Random sequential adsorption The Matérn repulsive processes
are related in spirit to the random sequential adsorption (RSA) model,
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which has been used in physics and chemistry to model particles that
bind to two-dimensional surfaces, e.g., proteins on a cell membrane [45,
51, 66, 123, 142, 143]. RSA is described generatively as follows. Initially,
the surface is empty; iteratively, particles arrive and bind uniformly at
random to a location from among all locations that are not within a
given radius of any previously bound particle. When no such locations
remain (the “jamming limit”), the process is complete.

Like the Matérn processes, RSA is a hard-core model, designed pri-
marily to capture packing distributions, with much of the theoretical
analysis focused on the achievable density. If the set of locations is
further restricted at each step to those found in an initially selected
Poisson set Y , then it is equivalent to a Matérn Type III process [69];
it therefore shares the same computational burdens.

2.5.2 Gibbs and Markov Point Processes

While manipulating the Poisson process procedurally has some intuitive
appeal, it seems plausible that a more holistically defined process might
be easier to work with, both analytically and algorithmically. The Gibbs
point process provides such an approach, offering a general framework
for incorporating correlations among selected items [33, 107, 108, 120,
124, 125, 148]. The Gibbs probability of a set Y is given by

P(Y = Y ) ∝ exp(−U(Y )), (2.76)

where U is an energy function. Of course, this definition is fully gen-
eral without further constraints on U . A typical assumption is that U
decomposes over subsets of items in Y ; for instance

exp(−U(Y )) =
∏

A⊆Y,|A|≤k
ψ|A|(A) (2.77)

for some small constant order k and potential functions ψ. In practice,
the most common case is k = 2, which is sometimes called a pairwise
interaction point process [39]:

P(Y = Y ) ∝
∏
i∈Y

ψ1(i)
∏
i,j⊆Y

ψ2(i, j). (2.78)

In spatial settings, a Gibbs point process whose potential functions are
identically 1 whenever their input arguments do not lie within a ball
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of fixed radius — that is, whose energy function can be decomposed
into only local terms — is called a Markov point process. A number of
specific Markov point processes have become well known.

Pairwise Markov processes Strauss [139] introduced a simple
pairwise Markov point process for spatial data in which the poten-
tial function ψ2(i, j) is piecewise constant, taking the value 1 whenever
i and j are at least a fixed radius apart, and the constant value γ other-
wise. When γ > 1, the resulting process prefers clustered items. (Note
that γ > 1 is only possible in the discrete case; in the continuous setting
the distribution becomes nonintegrable.) We are more interested in the
case 0 < γ < 1, where configurations in which selected items are near
one another are discounted. When γ = 0, the resulting process becomes
hard-core, but in general the Strauss process is “soft-core”, preferring
but not requiring diversity.

The Strauss process is typical of pairwise Markov processes in that
its potential function ψ2(i, j) = ψ(|i − j|) depends only on the distance
between its arguments. A variety of alternative definitions for ψ(·) have
been proposed [114, 125]. For instance,

ψ(r) = 1 − exp(−(r/σ)2) (2.79)

ψ(r) = exp(−(σ/r)n), n > 2 (2.80)

ψ(r) = min(r/σ,1), (2.81)

where σ controls the degree of repulsion in each case. Each definition
leads to a point process with a slightly different concept of diversity.

Area-interaction point processes Baddeley and Van Lieshout [3]
proposed a non-pairwise spatial Markov point process called the area-
interaction model, where U(Y ) is given by logγ times the total area
contained in the union of discs of fixed radius centered at all of the
items in Y . When γ > 1, we have logγ > 0 and the process prefers sets
whose discs cover as little area as possible, i.e., whose items are clus-
tered. When 0 < γ < 1, logγ becomes negative, so the process prefers
“diverse” sets covering as much area as possible.

If none of the selected items fall within twice the disc radius of each
other, then exp(−U(Y )) can be decomposed into potential functions
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over single items, since the total area is simply the sum of the indi-
vidual discs. Similarly, if each disc intersects with at most one other
disc, the area-interaction process can be written as a pairwise interac-
tion model. However, in general, an unbounded number of items might
appear in a given disc; as a result the area-interaction process is an
infinite-order Gibbs process. Since items only interact when they are
near one another, however, local potential functions are sufficient and
the process is Markov.

Computational issues Markov point processes have many intuitive
properties. In fact, it is not difficult to see that, for discrete ground
sets Y, the Markov point process is equivalent to a Markov random
field (MRF) on binary variables corresponding to the elements of Y.
In Section 3.2.2 we will return to this equivalence in order to discuss
the relative expressive possibilities of DPPs and MRFs. For now, how-
ever, we simply observe that, as for MRFs with negative correlations,
repulsive Markov point processes are computationally intractable. Even
computing the normalizing constant for Equation (2.76) is NP-hard in
the cases outlined above [32, 107].

On the other hand, quite a bit of attention has been paid to approxi-
mate inference algorithms for Markov point processes, employing pseu-
dolikelihood [8, 10, 71, 124], Markov chain Monte Carlo methods
[6, 9, 63, 125], and other approximations [38, 115]. Nonetheless, in gen-
eral these methods are slow and/or inexact, and closed-form expressions
for moments and densities rarely exist [108]. In this sense the DPP is
unique.

2.5.3 Generalizations of Determinants

The determinant of a k × k matrix K can be written as a polynomial
of degree k in the entries of K; in particular,

det(K) =
∑
π

sgn(π)
k∏
i=1

Ki,π(i), (2.82)

where the sum is over all permutations π on 1,2, . . . ,k, and sgn is the
permutation sign function. In a DPP, of course, when K is (a sub-
matrix of) the marginal kernel Equation (2.82) gives the appearance
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probability of the k items indexing K. A natural question is whether
generalizations of this formula give rise to alternative point processes
of interest.

Immanantal point processes In fact, Equation (2.82) is a special
case of the more general matrix immanant, where the sgn function is
replaced by χ, the irreducible representation-theoretic character of the
symmetric group on k items corresponding to a particular partition of
1,2, . . . ,k. When the partition has k parts, that is, each element is in
its own part, χ(π) = sgn(π) and we recover the determinant. When the
partition has a single part, χ(π) = 1 and the result is the permanent
of K. The associated permanental process was first described along-
side DPPs by Macchi [98], who referred to it as the “boson process.”
Bosons do not obey the Pauli exclusion principle, and the permanen-
tal process is in some ways the opposite of a DPP, preferring sets of
points that are more tightly clustered, or less diverse, than if they were
independent. Several recent papers have considered its properties in
some detail [68, 103]. Furthermore, [37] considered the point processes
induced by general immanants, showing that they are well defined and
in some sense “interpolate” between determinantal and permanental
processes.

Computationally, obtaining the permanent of a matrix is #P-
complete [147], making the permanental process difficult to work with
in practice. Complexity results for immanants are less definitive, with
certain classes of immanants apparently hard to compute [19, 20], while
some upper bounds on complexity are known [5, 65], and at least one
nontrivial case is efficiently computable [62]. It is not clear whether
the latter result provides enough leverage to perform inference beyond
computing marginals.

α-determinantal point processes An alternative generalization
of Equation (2.82) is given by the so-called α-determinant, where
sgn(π) is replaced by αk−ν(π), with ν(π) counting the number of cycles
in π [68, 152]. When α = −1 the determinant is recovered, and when
α = +1 we have again the permanent. Relatively little is known for
other values of α, although Shirai and Takahashi [133] conjecture that
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the associated process exists when 0 ≤ α ≤ 2 but not when α > 2.
Whether α-determinantal processes have useful properties for modeling
or computational advantages remains an open question.

Hyperdeterminantal point processes A third possible general-
ization of Equation (2.82) is the hyperdeterminant originally proposed
by Cayley [24] and discussed in the context of point processes by Evans
and Gottlieb [44]. Whereas the standard determinant operates on a two-
dimensional matrix with entries indexed by pairs of items, the hyper-
determinant operates on higher-dimensional kernel matrices indexed
by sets of items. The hyperdeterminant potentially offers additional
modeling power, and Evans and Gottlieb [44] show that some useful
properties of DPPs are preserved in this setting. However, so far rela-
tively little is known about these processes.

2.5.4 Quasirandom Processes

Monte Carlo methods rely on draws of random points in order to
approximate quantities of interest; randomness guarantees that,
regardless of the function being studied, the estimates will be accurate
in expectation and converge in the limit. However, in practice we get
to observe only a finite set of values drawn from the random source.
If, by chance, this set is “bad”, the resulting estimate may be poor.
This concern has led to the development of so-called quasirandom sets,
which are in fact deterministically generated, but can be substituted
for random sets in some instances to obtain improved convergence
guarantees [112, 135].

In contrast with pseudorandom generators, which attempt to mimic
randomness by satisfying statistical tests that ensure unpredictability,
quasirandom sets are not designed to appear random, and their
elements are not (even approximately) independent. Instead, they are
designed to have low discrepancy ; roughly speaking, low-discrepancy
sets are “diverse” in that they cover the sample space evenly. Consider
a finite subset Y of [0,1]D, with elements x(i) = (x(i)

1 ,x
(i)
2 , . . . ,x

(i)
D ) for

i = 1,2, . . . ,k. Let Sx = [0,x1) × [0,x2) × ·· · × [0,xD) denote the box
defined by the origin and the point x. The discrepancy of Y is defined
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as follows.

disc(Y ) = max
x∈Y

∣∣∣∣ |Y ∩ Sx|
k

− Vol(Sx)
∣∣∣∣ . (2.83)

That is, the discrepancy measures how the empirical density |Y ∩ Sx|/k
differs from the uniform density Vol(Sx) over the boxes Sx. Quasiran-
dom sets with low discrepancy cover the unit cube with more uniform
density than do pseudorandom sets, analogously to Figure 2.1.

This deterministic uniformity property makes quasirandom sets
useful for Monte Carlo estimation via (among other results) the
Koksma-Hlawka inequality [67, 112]. For a function f with bounded
variation V (f) on the unit cube, the inequality states that∣∣∣∣∣1k

∑
x∈Y

f(x) −
∫

[0,1]D
f(x)dx

∣∣∣∣∣ ≤ V (f)disc(Y ). (2.84)

Thus, low-discrepancy sets lead to accurate quasi-Monte Carlo
estimates. In contrast to typical Monte Carlo guarantees, the Koksma-
Hlawka inequality is deterministic. Moreover, since the rate of conver-
gence for standard stochastic Monte Carlo methods is k−1/2, this result
is an (asymptotic) improvement when the discrepancy diminishes faster
than k−1/2.

In fact, it is possible to construct quasirandom sequences where
the discrepancy of the first k elements is O((logk)D/k); the first such
sequence was proposed by [64]. The Sobol sequence [134], introduced
later, offers improved uniformity properties and can be generated effi-
ciently [18].

It seems plausible that, due to their uniformity characteristics,
low-discrepancy sets could be used as computationally efficient but
nonprobabilistic tools for working with data exhibiting diversity. An
algorithm generating quasirandom sets could be seen as an efficient
prediction procedure if made to depend somehow on input data and a
set of learned parameters. However, to our knowledge no work has yet
addressed this possibility.



3
Representation and Algorithms

Determinantal point processes come with a deep and beautiful theory,
and, as we have seen, exactly characterize many theoretical processes.
However, they are also promising models for real-world data that
exhibit diversity, and we are interested in making such applications as
intuitive, practical, and computationally efficient as possible. In this
section, we present a variety of fundamental techniques and algorithms
that serve these goals and form the basis of the extensions we discuss
later.

We begin by describing a decomposition of the DPP kernel that
offers an intuitive trade-off between a unary model of quality over the
items in the ground set and a global model of diversity. The geometric
intuitions from Section 2 extend naturally to this decomposition. Split-
ting the model into quality and diversity components then allows us
to make a comparative study of expressiveness — that is, the range
of distributions that the model can describe. We compare the expres-
sive powers of DPPs and negative-interaction Markov random fields,
showing that the two models are incomparable in general but exhibit
qualitatively similar characteristics, despite the computational advan-
tages offered by DPPs.

163
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Next, we turn to the challenges imposed by large datasets, which
are common in practice. We first address the case where N , the num-
ber of items in the ground set, is very large. In this setting, the
superlinear number of operations required for most DPP inference
algorithms can be prohibitively expensive. However, by introducing
a dual representation of a DPP we show that efficient DPP infer-
ence remains possible when the kernel is low-rank. When the kernel is
not low-rank, we prove that a simple approximation based on random
projections dramatically speeds inference while guaranteeing that the
deviation from the original distribution is bounded. These techniques
will be especially useful in Section 6, when we consider exponentially
large N .

Finally, we discuss some alternative formulas for the likelihood of a
set Y in terms of the marginal kernel K. Compared to the L-ensemble
formula in Equation (2.13), these may be analytically more convenient,
since they do not involve ratios or arbitrary principal minors.

3.1 Quality versus Diversity

An important practical concern for modeling is interpretability; that is,
practitioners should be able to understand the parameters of the model
in an intuitive way. While the entries of the DPP kernel are not totally
opaque in that they can be seen as measures of similarity — reflecting
our primary qualitative characterization of DPPs as diversifying pro-
cesses — in most practical situations we want diversity to be balanced
against some underlying preferences for different items in Y. In this
section, we propose a decomposition of the DPP that more directly
illustrates the tension between diversity and a per-item measure of
quality.

In Section 2 we observed that the DPP kernel L can be written as
a Gram matrix, L = B�B, where the columns of B are vectors repre-
senting items in the set Y. We now take this one step further, writing
each column Bi as the product of a quality term qi ∈ R

+ and a vector
of normalized diversity features φi ∈ R

D, ‖φi‖ = 1. (While D = N is
sufficient to decompose any DPP, we keep D arbitrary since in practice
we may wish to use high-dimensional feature vectors.) The entries of
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the kernel can now be written as

Lij = qiφ
�
i φjqj . (3.1)

We can think of qi ∈ R
+ as measuring the intrinsic “goodness” of an

item i, and φ�
i φj ∈ [−1,1] as a signed measure of similarity between

items i and j. We use the following shorthand for similarity:

Sij ≡ φ�
i φj =

Lij√
LiiLjj

. (3.2)

This decomposition of L has two main advantages. First, it implic-
itly enforces the constraint that L must be positive semidefinite, which
can potentially simplify learning (see Section 4). Second, it allows us
to independently model quality and diversity, and then combine them
into a unified model. In particular, we have:

PL(Y ) ∝
(∏
i∈Y

q2i

)
det(SY ), (3.3)

where the first term increases with the quality of the selected items and
the second term increases with the diversity of the selected items. We
will refer to q as the quality model and S or φ as the diversity model.
Without the diversity model, we would choose high-quality items, but
we would tend to choose similar high-quality items over and over. With-
out the quality model, we would get a very diverse set, but we might
fail to include the most important items in Y, focusing instead on low-
quality outliers. By combining the two models we can achieve a more
balanced result.

Returning to the geometric intuitions from Section 2.2.1, the deter-
minant of LY is equal to the squared volume of the parallelepiped
spanned by the vectors qiφi for i ∈ Y . The magnitude of the vector
representing item i is qi, and its direction is φi. Figure 3.1 (reproduced
from the previous section) now makes clear how DPPs decomposed in
this way naturally balance the two objectives of high quality and high
diversity. Going forward, we will nearly always assume that our models
are decomposed into quality and diversity components. This provides
us not only with a natural and intuitive setup for real-world applica-
tions, but also a useful perspective for comparing DPPs with existing
models, which we turn to next.
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Fig. 3.1 Revisiting DPP geometry: (a) The probability of a subset Y is the square of the
volume spanned by qiφi for i ∈ Y . (b) As item i’s quality qi increases, so do the probabilities
of sets containing item i. (c) As two items i and j become more similar, φ�

i φj increases
and the probabilities of sets containing both i and j decrease.

3.2 Expressive Power

Many probabilistic models are known and widely used within the
machine learning community. A natural question, therefore, is what
advantages DPPs offer that standard models do not. We have seen
already how a large variety of inference tasks, like sampling and con-
ditioning, can be performed efficiently for DPPs; however, efficiency is
essentially a prerequisite for any practical model. What makes DPPs
particularly unique is the marriage of these computational advantages
with the ability to express global, negative interactions between model-
ing variables; this repulsive domain is notoriously intractable using tra-
ditional approaches like graphical models [17, 70, 82, 109, 146, 156, 157].
In this section we elaborate on the expressive powers of DPPs and
compare them with those of Markov random fields, which we take as
representative graphical models.

3.2.1 Markov Random Fields

A Markov random field (MRF) is an undirected graphical model defined
by a graph G whose nodes 1,2, . . . ,N represent random variables. For
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our purposes, we will consider binary MRFs, where each output variable
takes a value from {0,1}. We use yi to denote a value of the i-th output
variable, bold yc to denote an assignment to a set of variables c, and y

for an assignment to all of the output variables. The graph edges E
encode direct dependence relationships between variables; for example,
there might be edges between similar elements i and j to represent
the fact that they tend not to co-occur. MRFs are often referred to as
conditional random fields when they are parameterized to depend on
input data, and especially when G is a chain [88].

An MRF defines a joint probability distribution over the output
variables that factorize across the cliques C of G:

P(y) =
1
Z

∏
c∈C

ψc(yc). (3.4)

Here each ψc is a potential function that assigns a nonnegative value to
every possible assignment yc of the clique c, and Z is the normalization
constant

∑
y′
∏
c∈C ψc(y

′
c). Note that, for a binary MRF, we can think

of y as the characteristic vector for a subset Y of Y = {1,2, . . . ,N}.
Then the MRF is equivalently the distribution of a random subset Y ,
where P(Y = Y ) is equivalent to P(y).

The Hammersley–Clifford theorem states that P(y) defined in
Equation (3.4) is always Markov with respect toG; that is, each variable
is conditionally independent of all other variables, given its neighbors
in G. The converse also holds: any distribution that is Markov with
respect to G, as long as it is strictly positive, can be decomposed over
the cliques of G as in Equation (3.4) [61]. MRFs therefore offer an intu-
itive way to model problem structure. Given domain knowledge about
the nature of the ways in which outputs interact, a practitioner can
construct a graph that encodes a precise set of conditional indepen-
dence relations. (Because the number of unique assignments to a clique
c is exponential in |c|, computational constraints generally limit us to
small cliques.)

For comparison with DPPs, we will focus on pairwise MRFs,
where the largest cliques with interesting potential functions are the
edges; that is, ψc(yc) = 1 for all cliques c where |c| > 2. The pairwise
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distribution is

P(y) =
1
Z

N∏
i=1

ψi(yi)
∏
ij∈E

ψij(yi,yj). (3.5)

We refer to ψi(yi) as node potentials and ψij(yi,yj) as edge potentials.
MRFs are very general models — in fact, if the cliques are

unbounded in size, they are fully general — but inference is only
tractable in certain special cases. Cooper [30] showed that general prob-
abilistic inference (conditioning and marginalization) in MRFs is NP-
hard, and this was later extended by Dagum and Luby [31], who showed
that inference is NP-hard even to approximate. Shimony [130] proved
that the MAP inference problem (finding the mode of an MRF) is
also NP-hard, and Abdelbar and Hedetniemi [1] showed that the MAP
problem is likewise hard to approximate. In contrast, we showed in
Section 2 that DPPs offer efficient exact probabilistic inference; fur-
thermore, although the MAP problem for DPPs is NP-hard, it can
be approximated to a constant factor under cardinality constraints in
polynomial time.

The first tractable subclass of MRFs was identified by Pearl [119],
who showed that belief propagation can be used to perform inference
in polynomial time when G is a tree. More recently, certain types of
inference in binary MRFs with associative (or submodular) potentials
ψ have been shown to be tractable [17, 79, 146]. Inference in nonbi-
nary associative MRFs is NP-hard, but can be efficiently approximated
to a constant factor depending on the size of the largest clique [146].
Intuitively, an edge potential is called associative if it encourages the
endpoint nodes take the same value (e.g., to be both in or both out
of the set Y ). More formally, associative potentials are at least one
whenever the variables they depend on are all equal, and exactly one
otherwise.

We can rewrite the pairwise, binary MRF of Equation (3.5) in a
canonical log-linear form:

P(y) ∝ exp


∑

i

wiyi +
∑
ij∈E

wijyiyj


. (3.6)
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Here we have eliminated redundancies by forcing ψi(0) = 1, ψij(0,0) =
ψij(0,1) = ψij(1,0) = 1, and setting wi = logψi(1), wij = logψij(1,1).
This parameterization is sometimes called the fully visible Boltzmann
machine. Under this representation, the MRF is associative whenever
wij ≥ 0 for all ij ∈ E.

We have seen that inference in MRFs is tractable when we restrict
the graph to a tree or require the potentials to encourage agreement.
However, the repulsive potentials necessary to build MRFs exhibiting
diversity are the opposite of associative potentials (since they imply
wij < 0), and lead to intractable inference for general graphs. Indeed,
such negative potentials can create “frustrated cycles”, which have been
used both as illustrations of common MRF inference algorithm failures
[82] and as targets for improving those algorithms [136]. A wide array
of (informally) approximate inference algorithms have been proposed
to mitigate tractability problems, but none to our knowledge effec-
tively and reliably handles the case where potentials exhibit strong
repulsion.

3.2.2 Comparing DPPs and MRFs

Despite the computational issues outlined in the previous section,
MRFs are popular models and, importantly, intuitive for practi-
tioners, both because they are familiar and because their potential
functions directly model simple, local relationships. We argue that
DPPs have a similarly intuitive interpretation using the decomposi-
tion in Section 3.1. Here, we compare the distributions realizable by
DPPs and MRFs to see whether the tractability of DPPs comes at a
large expressive cost.

Consider a DPP over Y = {1,2, . . . ,N} with N × N kernel matrix
L decomposed as in Section 3.1; we have

PL(Y ) ∝ det(LY ) =

(∏
i∈Y

q2i

)
det(SY ). (3.7)

The most closely related MRF is a pairwise, complete graph on N

binary nodes with negative interaction terms. We let yi = I(i ∈ Y ) be
indicator variables for the set Y , and write the MRF in the log-linear
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form of Equation (3.6):

PMRF(Y ) ∝ exp


∑

i

wiyi +
∑
i<j

wijyiyj


, (3.8)

where wij ≤ 0.
Both of these models can capture negative correlations between indi-

cator variables yi. Both models also have N(N+1)
2 parameters: the DPP

has quality scores qi and similarity measures Sij , and the MRF has node
log-potentials wi and edge log-potentials wij . The key representational
difference is that, while wij are individually constrained to be nonpos-
itive, the positive semidefinite constraint on the DPP kernel is global.
One consequence is that, as a side effect, the MRF can actually capture
certain limited positive correlations; for example, a 3-node MRF with
w12,w13 < 0 and w23 = 0 induces a positive correlation between nodes
two and three by virtue of their mutual disagreement with node one.
As we have seen in Section 2, the semidefinite constraint prevents the
DPP from forming any positive correlations.

More generally, semidefiniteness means that the DPP diversity fea-
ture vectors must satisfy the triangle inequality, leading to√

1 − Sij +
√

1 − Sjk ≥
√

1 − Sik (3.9)

for all i, j,k ∈ Y since ‖φi − φj‖ ∝
√

1 − Sij . The similarity measure
therefore obeys a type of transitivity, with large Sij and Sjk implying
large Sik.

Equation (3.9) is not, by itself, sufficient to guarantee that L is
positive semidefinite, since S must also be realizable using unit length
feature vectors. However, rather than trying to develop further intuition
algebraically, we turn to visualization. While it is difficult to depict the
feasible distributions of DPPs and MRFs in high dimensions, we can
get a feel for their differences even with a small number of elements N .

When N = 2, it is easy to show that the two models are equivalent,
in the sense that they can both represent any distribution with negative
correlations:

P(y1 = 1)P(y2 = 1) ≥ P(y1 = 1,y2 = 1). (3.10)
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Fig. 3.2 A factor graph representation of a 3-item MRF or DPP.

When N = 3, differences start to become apparent. In this setting
both models have six parameters: for the DPP they are (q1, q2, q3,S12,
S13,S23), and for the MRF they are (w1,w2,w3,w12,w13,w23). To place
the two models on equal footing, we represent each as the product
of unnormalized per-item potentials ψ1,ψ2,ψ3 and a single unnormal-
ized ternary potential ψ123. This representation corresponds to a factor
graph with three nodes and a single, ternary factor (see Figure 3.2).
The probability of a set Y is then given by

P(Y ) ∝ ψ1(y1)ψ2(y2)ψ3(y3)ψ123(y1,y2,y3). (3.11)

For the DPP, the node potentials are ψDPP
i (yi) = q2yi

i , and for the MRF
they are ψMRF

i (yi) = ewiyi . The ternary factors are

ψDPP
123 (y1,y2,y3) = det(SY ), (3.12)

ψMRF
123 (y1,y2,y3) = exp


∑
i<j

wijyiyj


. (3.13)

Since both models allow setting the node potentials arbitrarily,
we focus now on the ternary factor. Table 3.1 shows the values of
ψDPP

123 and ψMRF
123 for all subsets Y ⊆ Y. The last four entries are deter-

mined, respectively, by the three edge parameters of the MRF and three
similarity parameters Sij of the DPP, so the sets of realizable ternary
factors form three-dimensional manifolds in four-dimensional space. We
attempt to visualize these manifolds by showing two-dimensional slices
in three-dimensional space for various values of ψ123(1,1,1) (the last
row of Table 3.1).

Figure 3.3(a) depicts four such slices of the realizable DPP distri-
butions, and Figure 3.3(b) shows the same slices of the realizable MRF
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Table 3.1. Values of ternary factors for 3-item MRFs and DPPs.

Y y1y2y3 ψMRF
123 ψDPP

123

{} 000 1 1
{1} 100 1 1
{2} 010 1 1
{3} 001 1 1
{1,2} 110 ew12 1 − S2

12
{1,3} 101 ew13 1 − S2

13
{2,3} 011 ew23 1 − S2

23
{1,2,3} 111 ew12+w13+w23 1 + 2S12S13S23 − S2

12 − S2
13 − S2

23

distributions. Points closer to the origin (on the lower left) correspond
to “more repulsive” distributions, where the three elements of Y are
less likely to appear together. When ψ123(1,1,1) is large (gray surfaces),
negative correlations are weak and the two models give rise to quali-
tatively similar distributions. As the value of the ψ123(1,1,1) shrinks
to zero (red surfaces), the two models become quite different. MRFs,
for example, can describe distributions where the first item is strongly
anticorrelated with both of the others, but the second and third are
not anticorrelated with each other. The transitive nature of the DPP
makes this impossible.

To improve visibility, we have constrained S12,S13,S23 ≥ 0 in Fig-
ure 3.3(a). Figure 3.3(c) shows a single slice without this constraint;
allowing negative similarity makes it possible to achieve strong
three-way repulsion with less pairwise repulsion, closing the surface
away from the origin. The corresponding MRF slice is shown in
Figure 3.3(d), and the two are overlaid in Figures 3.3(e) and 3.3(f).
Even though there are relatively strong interactions in these plots
(ψ123(1,1,1) = 0.1), the models remain roughly comparable in terms
of the distributions they can express.

As N gets larger, we conjecture that the story is essentially the
same. DPPs are primarily constrained by a notion of transitivity on the
similarity measure; thus it would be difficult to use a DPP to model,
for example, data where items repel “distant” items rather than similar
items — if i is far from j and j is far from k we cannot necessarily con-
clude that i is far from k. One way of looking at this is that repulsion of
distant items induces positive correlations between the selected items,
which a DPP cannot represent.
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Fig. 3.3 (a,b) Realizable values of ψ123(1,1,0), ψ123(1,0,1), and ψ123(0,1,1) in a 3-factor
when ψ123(1,1,1) = 0.001 (red), 0.25 (green), 0.5 (blue), and 0.75 (gray). (c,d) Surfaces
for ψ123(1,1,1) = 0.1, allowing negative similarity for the DPP. (e,f) DPP (blue) and MRF
(red) surfaces superimposed.
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MRFs, on the other hand, are constrained by their local nature
and do not effectively model data that are “globally” diverse. For
instance, a pairwise MRF we cannot exclude a set of three or more
items without excluding some pair of those items. More generally, an
MRF assumes that repulsion does not depend on (too much) context,
so it cannot express that, say, there can be only a certain number of
selected items overall. The DPP can naturally implement this kind of
restriction though the rank of the kernel.

3.3 Dual Representation

The standard inference algorithms for DPPs rely on manipulating the
kernel L through inversion, eigendecomposition, and so on. However, in
situations where N is large we may not be able to work efficiently with
L — in some cases we may not even have the memory to write it down.
In this section, instead, we develop a dual representation of a DPP that
shares many important properties with the kernel L but is often much
smaller. Afterward, we will show how this dual representation can be
applied to perform efficient inference.

Let B be the D × N matrix whose columns are given by Bi = qiφi,
so that L = B�B. Consider now the matrix

C = BB�. (3.14)

By construction, C is symmetric and positive semidefinite. In contrast
to L, which is too expensive to work with when N is large, C is only
D × D, where D is the dimension of the diversity feature function φ.
In many practical situations, D is fixed by the model designer, while N
may grow without bound as new items become available; for instance, a
search engine may continually add to its database of links. Furthermore,
we have the following result.

Proposition 3.1. The nonzero eigenvalues of C and L are identi-
cal, and the corresponding eigenvectors are related by the matrix B.
That is,

C =
D∑
n=1

λnv̂nv̂
�
n (3.15)
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is an eigendecomposition of C if and only if

L =
D∑
n=1

λn

(
1√
λn
B�v̂n

)(
1√
λn
B�v̂n

)�
(3.16)

is an eigendecomposition of L.

Proof. In the forward direction, we assume that {(λn, v̂n)}Dn=1 is an
eigendecomposition of C. We have

D∑
n=1

λn

(
1√
λn
B�v̂n

)(
1√
λn
B�v̂n

)�
= B�

(
D∑
n=1

v̂nv̂
�
n

)
B

(3.17)

= B�B = L, (3.18)

since v̂n are orthonormal by assumption. Furthermore, for any n we
have ∥∥∥∥ 1√

λn
B�v̂n

∥∥∥∥
2

=
1
λn

(B�v̂n)�(B�v̂n) (3.19)

=
1
λn

v̂�
nCv̂n (3.20)

=
1
λn
λn‖v̂n‖ (3.21)

= 1, (3.22)

using the fact that Cv̂n = λnv̂n since v̂n is an eigenvector of C. Finally,
for any distinct 1 ≤ a,b ≤ D, we have(

1√
λa
B�v̂a

)�( 1√
λb
B�v̂b

)
=

1√
λaλb

v̂�
a Cv̂b (3.23)

=
√
λb√
λa

v̂�
a v̂b (3.24)

= 0. (3.25)

Thus
{(
λn,

1√
λn
B�v̂n

)}D
n=1

is an eigendecomposition of L. In the other
direction, an analogous argument applies once we observe that, since
L = B�B, L has rank at most D and therefore at most D nonzero
eigenvalues.
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Proposition 3.1 shows that C contains quite a bit of information
about L. In fact, C is sufficient to perform nearly all forms of DPP
inference efficiently, including normalization and marginalization in
constant time with respect to N , and sampling in time linear in N .

3.3.1 Normalization

Recall that the normalization constant for a DPP is given by
det(L + I). If λ1,λ2, . . . ,λN are the eigenvalues of L, then the nor-
malization constant is equal to

∏N
n=1(λn + 1), since the determinant is

the product of the eigenvalues of its argument. By Proposition 3.1, the
nonzero eigenvalues of L are also the eigenvalues of the dual represen-
tation C. Thus, we have

det(L + I) =
D∏
n=1

(λn + 1) = det(C + I). (3.26)

Computing the determinant of C + I requires O(Dω) time.

3.3.2 Marginalization

Standard DPP marginalization makes use of the marginal kernel K,
which is of course as large as L. However, the dual representation C

can be used to compute the entries of K. We first eigendecompose the
dual representation as C =

∑D
n=1λnv̂nv̂

�
n , which requires O(Dω) time.

Then, we can use the definition ofK in terms of the eigendecomposition
of L as well as Proposition 3.1 to compute

Kii =
D∑
n=1

λn
λn + 1

(B�
i v̂n)2 (3.27)

= q2i

D∑
n=1

λn
λn + 1

(φ�
i v̂n)2. (3.28)

That is, the diagonal entries ofK are computable from the dot products
between the diversity features φi and the eigenvectors of C; we can
therefore compute the marginal probability of a single item i ∈ Y from
an eigendecomposition of C in O(D2) time. Similarly, given two items
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i and j we have

Kij =
D∑
n=1

λn
λn + 1

(B�
i v̂n)(B�

j v̂n) (3.29)

= qiqj

D∑
n=1

λn
λn + 1

(φ�
i v̂n)(φ�

j v̂n), (3.30)

so we can compute arbitrary entries of K in O(D2) time. This allows
us to compute, for example, pairwise marginals P(i, j ∈ Y ) = KiiKjj −
K2
ij . More generally, for a set A ∈ Y, |A| = k, we need to compute k(k+1)

2
entries of K to obtain KA, and taking the determinant then yields
P(A ⊆ Y ). The process requires only O(D2k2 + kω) time; for small
sets |A| this is just quadratic in the dimension of φ.

3.3.3 Sampling

Recall the DPP sampling algorithm, which is reproduced for con-
venience in Algorithm 2. We will show that this algorithm can be
implemented in a tractable manner by using the dual representation C.
The main idea is to represent V , the orthonormal set of vectors in R

N ,
as a set V̂ of vectors in R

D, with the mapping

V = {B�v̂ | v̂ ∈ V̂ }. (3.31)

Note that, when V̂ contains eigenvectors of C, this is (up to scale) the
relationship established by Proposition 3.1 between eigenvectors v̂ of
C and eigenvectors v of L.

The mapping in Equation (3.31) has several useful properties. If
v1 = B�v̂1 and v2 = B�v̂2, then v1 + v2 = B�(v̂1 + v̂2), and likewise
for any arbitrary linear combination. In other words, we can perform
implicit scaling and addition of the vectors in V using only their preim-
ages in V̂ . Additionally, we have

v�
1 v2 = (B�v̂1)�(B�v̂2) (3.32)

= v̂�
1 Cv̂2, (3.33)

so we can compute dot products of vectors in V in O(D2) time. This
means that, for instance, we can implicitly normalize v = B�v̂ by
updating v̂← v̂

v̂�Cv̂
.
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Algorithm 2 Sampling from a DPP
Input: eigendecomposition {(vn,λn)}Nn=1 of L
J ← ∅
for n = 1,2, . . . ,N do
J ← J ∪ {n} with prob. λn

λn+1
end for
V ← {vn}n∈J
Y ← ∅
while |V | > 0 do

Select i from Y with Pr(i) = 1
|V |
∑

v∈V (v�ei)2

Y ← Y ∪ i
V ← V⊥, an orthonormal basis for the subspace of V orthogonal
to ei

end while
Output: Y

We now show how these operations allow us to efficiently implement
key parts of the sampling algorithm. Because the nonzero eigenvalues
of L and C are equal, the first loop of the algorithm, where we choose
in index set J , remains unchanged. Rather than using J to construct
orthonormal V directly, however, we instead build the set V̂ by adding

v̂n

v̂�
nCv̂n

for every n ∈ J .
In the last phase of the loop, we need to find an orthonormal basis

V⊥ for the subspace of V orthogonal to a given ei. This requires two
steps. In the first, we subtract a multiple of one of the vectors in V from
all of the other vectors so that they are zero in the i-th component,
leaving us with a set of vectors spanning the subspace of V orthogonal
to ei. In order to do this we must be able to compute the i-th component
of a vector v ∈ V ; since v = B�v̂, this is easily done by computing the
i-th column of B, and then taking the dot product with v̂. This takes
only O(D) time. In the second step, we use the Gram–Schmidt process
to convert the resulting vectors into an orthonormal set. This requires
a series of dot products, sums, and scalings of vectors in V ; however,
as previously argued all of these operations can be performed implic-
itly. Therefore the mapping in Equation (3.31) allows us to implement



3.4 Random Projections 179

the final line of the second loop using only tractable computations on
vectors in V̂ .

All that remains, then, is to efficiently choose an item i according
to the distribution

Pr(i) =
1
|V |
∑
v∈V

(v�ei)2 (3.34)

=
1
|V̂ |
∑
v̂∈V̂

((B�v̂)�ei)2 (3.35)

in the first line of the while loop. Simplifying, we have

Pr(i) =
1
|V̂ |
∑
v̂∈V̂

(v̂�Bi)2. (3.36)

Thus the required distribution can be computed in time O(NDk),
where k = |V̂ |. The complete dual sampling algorithm is given in
Algorithm 3; the overall runtime is O(NDk2 + D2k3).

3.4 Random Projections

As we have seen, dual DPPs allow us to deal with settings where N is
too large to work efficiently with L by shifting the computational focus
to the dual kernel C, which is only D × D. This is an effective approach
when D� N . Of course, in some cases D might also be unmanageably
large, for instance when the diversity features are given by word counts
in natural language settings, or high-resolution image features in vision.

To address this problem, we describe a method for reducing the
dimension of the diversity features while maintaining a close approxi-
mation to the original DPP model. Our approach is based on applying
random projections, an extremely simple technique that nonetheless
provides an array of theoretical guarantees, particularly with respect
to preserving distances between points [151]. A classic result of John-
son and Lindenstrauss [76], for instance, shows that high-dimensional
points can be randomly projected onto a logarithmic number of dimen-
sions while approximately preserving the distances between them. More
recently, Magen and Zouzias [99] extended this idea to the preservation
of volumes spanned by sets of points. Here, we apply the connection
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Algorithm 3 Sampling from a DPP (dual representation)
Input: eigendecomposition {(v̂n,λn)}Nn=1 of C
J ← ∅
for n = 1,2, . . . ,N do
J ← J ∪ {n} with prob. λn

λn+1
end for
V ←

{
v̂n

v̂�Cv̂

}
n∈J

Y ← ∅
while |V | > 0 do

Select i from Y with Pr(i) = 1
|V̂ |
∑

v̂∈V̂ (v̂�Bi)2

Y ← Y ∪ i
Let v̂0 be a vector in V̂ with B�

i v̂0 
= 0
Update V̂ ←

{
v̂ − v̂�Bi

v̂�
0 Bi

v̂0 | v̂ ∈ V̂ − {v̂0}
}

Orthonormalize V̂ with respect to the dot product 〈v̂1, v̂2〉 =
v̂�

1 Cv̂2

end while
Output: Y

between DPPs and spanned volumes to show that random projections
allow us to reduce the dimensionality of φ, dramatically speeding up
inference, while maintaining a provably close approximation to the orig-
inal, high-dimensional model. We begin by stating a variant of Magen
and Zouzias’ result.

Lemma 3.2. (Adapted from Magen and Zouzias [99]) Let X be a
D × N matrix. Fix k < N and 0 < ε,δ < 1/2, and set the projection
dimension

d = max
{

2k
ε
,
24
ε2

(
log(3/δ)
logN

+ 1
)

(logN + 1) + k − 1
}
. (3.37)

Let G be a d × D random projection matrix whose entries are inde-
pendently sampled from N (0, 1

d), and let XY , where Y ⊆ {1,2, . . . ,N},
denote the D × |Y | matrix formed by taking the columns of X corre-
sponding to indices in Y . Then with probability at least 1 − δ we have,
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for all Y with cardinality at most k:

(1 − ε)|Y | ≤ Vol(GXY )
Vol(XY )

≤ (1 + ε)|Y |, (3.38)

where Vol(XY ) is the k-dimensional volume of the parallelepiped
spanned by the columns of XY .

Lemma 3.2 says that, with high probability, randomly projecting to

d = O(max{k/ε,(log(1/δ) + logN)/ε2}) (3.39)

dimensions is sufficient to approximately preserve all volumes spanned
by k columns of X. We can use this result to bound the effectiveness
of random projections for DPPs.

In order to obtain a result that is independent of D, we will restrict
ourselves to the portion of the distribution pertaining to subsets Y with
cardinality at most a constant k. This restriction is intuitively reason-
able for any application where we use DPPs to model sets of relatively
small size compared to N , which is common in practice. However, for-
mally it may seem a bit strange, since it implies conditioning the DPP
on cardinality. In Section 5 we will show that this kind of condition-
ing is actually very practical and efficient, and Theorem 3.3, which we
prove shortly, will apply directly to the k-DPPs of Section 5 without
any additional work.

For now, we will seek to approximate the distribution P≤k(Y ) =
P(Y = Y | |Y | ≤ k), which is simply the original DPP conditioned on
the cardinality of the modeled subset:

P≤k(Y ) =

(∏
i∈Y q

2
i

)
det(φ(Y )�φ(Y ))∑

|Y ′|≤k
(∏

i∈Y q
2
i

)
det(φ(Y )�φ(Y ))

, (3.40)

where φ(Y ) denotes the D × |Y | matrix formed from columns φi for
i ∈ Y . Our main result follows.

Theorem 3.3. Let P≤k(Y ) be the cardinality-conditioned DPP distri-
bution defined by quality model q and D-dimensional diversity feature
function φ, and let

P̃≤k(Y ) ∝
(∏
i∈Y

q2i

)
det([Gφ(Y )]�[Gφ(Y )]) (3.41)
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be the cardinality-conditioned DPP distribution obtained by projecting
φ with G. Then for projection dimension d as in Equation (3.37), we
have

‖P≤k − P̃≤k‖1 ≤ e6kε − 1 (3.42)

with probability at least 1 − δ. Note that e6kε − 1 ≈ 6kε when kε is
small.

The theorem says that for d logarithmic in N and linear in k, the
L1 variational distance between the original DPP and the randomly
projected version is bounded. In order to use Lemma 3.2, which bounds
volumes of parallelepipeds, to prove this bound on determinants, we will
make use of the following relationship:

Vol(XY ) =
√

det(X�
Y XY ). (3.43)

In order to handle the conditional DPP normalization constant∑
|Y |≤k

(∏
i∈Y

q2i

)
det(φ(Y )�φ(Y )), (3.44)

we also must adapt Lemma 3.2 to sums of determinants. Finally, for
technical reasons we will change the symmetry of the upper and lower
bounds from the sign of ε to the sign of the exponent. The following
lemma gives the details.

Lemma 3.4. Under the definitions and assumptions of Lemma 3.2, we
have, with probability at least 1 − δ,

(1 + 2ε)−2k ≤
∑

|Y |≤k det((GXY )�(GXY ))∑
|Y |≤k det(X�

Y XY )
≤ (1 + ε)2k. (3.45)

Proof.∑
|Y |≤k

det((GXY )�(GXY )) =
∑

|Y |≤k
Vol2(GXY ) (3.46)

≥
∑

|Y |≤k
(Vol(XY )(1 − ε)|Y |)2 (3.47)
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≥ (1 − ε)2k
∑

|Y |≤k
Vol2(XY ) (3.48)

≥ (1 + 2ε)−2k
∑

|Y |≤k
det(X�

Y XY ),(3.49)

where the first inequality holds with probability at least 1 − δ by
Lemma 3.2, and the third follows from the fact that (1 − ε)(1 + 2ε) ≥ 1
(since ε < 1/2), thus (1 − ε)2k ≥ (1 + 2ε)−2k. The upper bound follows
directly: ∑

|Y |≤k
(Vol(GXY ))2 ≤

∑
|Y |≤k

(Vol(XY )(1 + ε)|Y |)2 (3.50)

≤ (1 + ε)2k
∑

|Y |≤k
det(X�

Y XY ). (3.51)

We can now prove Theorem 3.3.

Proof of Theorem 3.3. Recall the matrix B, whose columns are given
by Bi = qiφi. We have

‖P≤k − P̃≤k‖1
=
∑

|Y |≤k
|P≤k(Y ) − P̃≤k(Y )| (3.52)

=
∑

|Y |≤k
P≤k(Y )

∣∣∣∣∣1 − P̃≤k(Y )
P≤k(Y )

∣∣∣∣∣ (3.53)

=
∑

|Y |≤k
P≤k(Y )

×
∣∣∣∣∣1 − det([GB�

Y ][GBY ])
det(B�

Y BY )

∑
|Y ′|≤k det(B�

Y ′BY ′)∑
|Y ′|≤k det([GB�

Y ′ ][GBY ′ ])

∣∣∣∣∣
≤
∣∣∣1 − (1 + ε)2k(1 + 2ε)2k

∣∣∣ ∑
|Y |≤k

P≤k(Y ) (3.54)

≤ e6kε − 1, (3.55)
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where the first inequality follows from Lemma 3.2 and Lemma 3.4,
which hold simultaneously with probability at least 1 − δ, and the sec-
ond follows from (1 + a)b ≤ eab for a,b ≥ 0.

By combining the dual representation with random projections, we
can deal simultaneously with very large N and very large D. In fact, in
Section 6 we will show that N can even be exponentially large if certain
structural assumptions are met. These techniques vastly expand the
range of problems to which DPPs can be practically applied.

3.5 Alternative Likelihood Formulas

Recall that, in an L-ensemble DPP, the likelihood of a particular set
Y ⊆ Y is given by

PL(Y ) =
det(LY )

det(L + I)
. (3.56)

This expression has some nice intuitive properties in terms of volumes,
and, ignoring the normalization in the denominator, takes a simple
and concise form. However, as a ratio of determinants on matrices
of differing dimension, it may not always be analytically convenient.
Minors can be difficult to reason about directly, and ratios complicate
calculations like derivatives. Moreover, we might want the likelihood
in terms of the marginal kernel K = L(L + I)−1 = I − (L + I)−1, but
simply plugging in these identities yields a expression that is somewhat
unwieldy.

As alternatives, we will derive some additional formulas that,
depending on context, may have useful advantages. Our starting point
will be the observation, used previously in the proof of Theorem 2.2,
that minors can be written in terms of full matrices and diagonal indi-
cator matrices; specifically, for positive semidefinite L,

det(LY ) = det(IY L + IȲ ) (3.57)

= (−1)|Ȳ | det(IY L − IȲ ) (3.58)

= |det(IY L − IȲ )|, (3.59)

where IY is the diagonal matrix with ones in the diagonal positions cor-
responding to elements of Y and zeros everywhere else, and Ȳ = Y − Y .
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These identities can be easily shown by examining the matrices block-
wise under the partition Y = Y ∪ Ȳ , as in the proof of Theorem 2.2.

Applying Equation (3.57) to Equation (3.56), we get

PL(Y ) =
det(IY L + IȲ )

det(L + I)
(3.60)

= det((IY L + IȲ )(L + I)−1) (3.61)

= det(IY L(L + I)−1 + IȲ (L + I)−1). (3.62)

Already, this expression, which is a single determinant of an N × N
matrix, is in some ways easier to work with. We can also more easily
write the likelihood in terms of K:

PL(Y ) = det(IYK + IȲ (I − K)). (3.63)

Recall from Equation (2.27) that I − K is the marginal kernel of
the complement DPP; thus, in an informal sense we can read Equa-
tion (3.63) as combining the marginal probability that Y is selected
with the marginal probability that Ȳ is not selected.

We can also make a similar derivation using Equation (3.58):

PL(Y ) = (−1)|Ȳ | det(IY L − IȲ )
det(L + I)

(3.64)

= (−1)|Ȳ | det((IY L − IȲ )(L + I)−1) (3.65)

= (−1)|Ȳ | det(IY L(L + I)−1 − IȲ (L + I)−1) (3.66)

= (−1)|Ȳ | det(IYK − IȲ (I − K)) (3.67)

= (−1)|Ȳ | det(K − IȲ ) (3.68)

= |det(K − IȲ )|. (3.69)

Note that Equation (3.63) involves asymmetric matrix products, but
Equation (3.69) does not; on the other hand, K − IȲ is (in general)
indefinite.



4
Learning

We have seen that determinantal point process offer appealing model-
ing intuitions and practical algorithms, capturing geometric notions of
diversity and permitting computationally efficient inference in a vari-
ety of settings. However, to accurately model real-world data we must
first somehow determine appropriate values of the model parameters.
While an expert could conceivably design an appropriate DPP kernel
from prior knowledge, in general, especially when dealing with large
datasets, we would like to have an automated method for learning a
DPP.

We first discuss how to parameterize DPPs conditioned on input
data. We then define what we mean by learning, and, using the quality
versus diversity decomposition introduced in Section 3.1, we show
how a parameterized quality model can be learned efficiently from a
training set.

4.1 Conditional DPPs

Suppose we want to use a DPP to model the seats in an auditorium
chosen by students attending a class. (Perhaps we think students tend

186
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to spread out.) In this context each meeting of the class is a new sample
from the empirical distribution over subsets of the (fixed) seats, so we
merely need to collect enough samples and we should be able to fit our
model, as desired.

For many problems, however, the notion of a single fixed base set Y
is inadequate. For instance, consider extractive document summariza-
tion, where the goal is to choose a subset of the sentences in a news
article that together form a good summary of the entire article. In
this setting Y is the set of sentences in the news article being summa-
rized, thus Y is not fixed in advance but instead depends on context.
One way to deal with this problem is to model the summary for each
article as its own DPP with a separate kernel matrix. This approach
certainly affords great flexibility, but if we have only a single sample
summary for each article, there is little hope of getting good parameter
estimates. Even more importantly, we have learned nothing that can
be applied to generate summaries of unseen articles at test time, which
was presumably our goal in the first place.

Alternatively, we could let Y be the set of all sentences appearing
in any news article; this allows us to learn a single model for all of
our data, but comes with obvious computational issues and does not
address the other concerns, since sentences are rarely repeated.

To solve this problem, we need a DPP that depends parametrically
on the input data; this will enable us to share information across train-
ing examples in a justifiable and effective way. We first introduce some
notation. Let X be the input space; for example, X might be the space
of news articles. Let Y(X) denote the ground set of items implied by
an input X ∈ X , e.g., the set of all sentences in news article X. We
have the following definition.

Definition 4.1. A conditional DPP P(Y = Y |X) is a conditional
probabilistic model which assigns a probability to every possible subset
Y ⊆ Y(X). The model takes the form of an L-ensemble:

P(Y = Y |X) ∝ det(LY (X)), (4.1)

where L(X) is a positive semidefinite |Y(X)| × |Y(X)| kernel matrix
that depends on the input.
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As discussed in Section 2, the normalization constant for a
conditional DPP can be computed efficiently and is given by
det(L(X) + I). Using the quality/diversity decomposition introduced
in Section 3.1, we have

Lij(X) = qi(X)φi(X)�φj(X)qj(X) (4.2)

for suitable qi(X) ∈ R
+ and φi(X) ∈ R

D, ‖φi(X)‖ = 1, which now
depend on X.

In the following sections we will discuss application-specific param-
eterizations of the quality and diversity models q and φ in terms of the
input. First, however, we review our learning setup.

4.1.1 Supervised Learning

The basic supervised learning problem is as follows. We receive a train-
ing data sample {(X(t),Y (t))}Tt=1 drawn independently and identically
from a distribution D over pairs (X,Y ) ∈ X × 2Y(X), where X is an
input space and Y(X) is the associated ground set for input X. We
assume that the conditional DPP kernel L(X;θ) is parameterized in
terms of a generic θ, and let

Pθ(Y |X) =
det(LY (X;θ))

det(L(X;θ) + I)
(4.3)

denote the conditional probability of an output Y , given input X

under parameter θ. The goal of learning is to choose appropriate θ

based on the training sample so that we can make accurate predictions
on unseen inputs.

While there are a variety of objective functions commonly used
for learning, here we will focus on maximum likelihood learning (or
maximum likelihood estimation, often abbreviated MLE), where the
goal is to choose θ to maximize the conditional log-likelihood of the
observed data:

L(θ) = log
T∏
t=1

Pθ(Y (t)|X(t)) (4.4)
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=
T∑
t=1

logPθ(Y (t)|X(t)) (4.5)

=
T∑
t=1

[logdet(LY (t)(X(t);θ)) − logdet(L(X(t);θ) + I)]. (4.6)

Optimizing L is consistent under mild assumptions; that is, if the train-
ing data are actually drawn from a conditional DPP with parameter θ∗,
then the learned θ→ θ∗ as T →∞. Of course real data are unlikely to
exactly follow any particular model, but in any case the maximum like-
lihood approach has the advantage of calibrating the DPP to produce
reasonable probability estimates, since maximizing L can be seen as
minimizing the log-loss on the training data.

To optimize the log-likelihood, we will use standard algorithms such
as gradient ascent or L-BFGS [113]. These algorithms depend on the
gradient ∇L(θ), which must exist and be computable, and they con-
verge to the optimum whenever L(θ) is concave in θ. Thus, our ability
to optimize likelihood efficiently will depend fundamentally on these
two properties.

4.2 Learning Quality

We begin by showing how to learn a parameterized quality model
qi(X;θ) when the diversity feature function φi(X) is held fixed [85].
This setup is somewhat analogous to support vector machines [149],
where a kernel is fixed by the practitioner and then the per-example
weights are automatically learned. Here, φi(X) can consist of any
desired measurements (and could even be infinite-dimensional, as long
as the resulting similarity matrix S is a proper kernel). We propose
computing the quality scores using a log-linear model:

qi(X;θ) = exp
(

1
2
θ�f i(X)

)
, (4.7)

where f i(X) ∈ R
m is a feature vector for item i and the parameter θ

is now concretely an element of R
m. Note that feature vectors f i(X)

are in general distinct from φi(X); the former are used for modeling
quality, and will be “interpreted” by the parameters θ, while the latter
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define the diversity model S, which is fixed in advance. We have

Pθ(Y |X) =
∏
i∈Y [exp(θ�f i(X))]det(SY (X))∑

Y ′⊆Y(X)
∏
i∈Y ′ [exp(θ�f i(X))]det(SY ′(X))

. (4.8)

For ease of notation, going forward we will assume that the train-
ing set contains only a single instance (X,Y ), and drop the instance
index t. All of the following results extend easily to multiple training
examples. First, we show that under this parameterization the log-
likelihood function is concave in θ; then we will show that its gradient
can be computed efficiently. With these results in hand we will be able
to apply standard optimization techniques.

Proposition 4.1. L(θ) is concave in θ.

Proof. We have

L(θ) = logPθ(Y |X) (4.9)

= θ�∑
i∈Y

f i(X) + logdet(SY (X))

− log
∑

Y ′⊆Y(X)

exp

(
θ�∑

i∈Y ′
f i(X)

)
det(SY ′(X)). (4.10)

With respect to θ, the first term is linear, the second is constant, and
the third is the composition of a concave function (negative log-sum-
exp) and an affine function, so the overall expression is concave.

We now derive the gradient ∇L(θ), using Equation (4.10) as a start-
ing point.

∇L(θ) =
∑
i∈Y

f i(X) − ∇

log

∑
Y ′⊆Y(X)

exp

(
θ�∑

i∈Y ′
f i(X)

)
det(SY ′(X))




(4.11)
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=
∑
i∈Y

f i(X)

−
∑

Y ′⊆Y(X)

exp
(
θ�∑

i∈Y ′ f i(X)
)
det(SY ′(X))

∑
i∈Y ′ f i(X)∑

Y ′ exp
(
θ�∑

i∈Y ′ f i(X)
)
det(SY ′(X))

(4.12)

=
∑
i∈Y

f i(X) −
∑

Y ′⊆Y(X)

Pθ(Y ′|X)
∑
i∈Y ′

f i(X). (4.13)

Thus, as in standard maximum entropy modeling, the gradient of
the log-likelihood can be seen as the difference between the empiri-
cal feature counts and the expected feature counts under the model
distribution. The difference here, of course, is that Pθ is a DPP, which
assigns higher probability to diverse sets. Compared with a standard
independent model obtained by removing the diversity term from Pθ,
Equation (4.13) actually emphasizes those training examples that are
not diverse, since these are the examples on which the quality model
must focus its attention in order to overcome the bias imposed by the
determinant. In the experiments that follow we will see that this dis-
tinction is important in practice.

The sum over Y ′ in Equation (4.13) is exponential in |Y(X)|; hence
we cannot compute it directly. Instead, we can rewrite it by switching
the order of summation:∑

Y ′⊆Y(X)

Pθ(Y ′|X)
∑
i∈Y ′

f i(X) =
∑
i

f i(X)
∑

Y ′⊇{i}
Pθ(Y ′|X). (4.14)

Note that
∑

Y ′⊇{i}Pθ(Y ′|X) is the marginal probability of item i

appearing in a set sampled from the conditional DPP. That is, the
expected feature counts are computable directly from the marginal
probabilities. Recall that we can efficiently marginalize DPPs; in par-
ticular, per-item marginal probabilities are given by the diagonal of
K(X;θ), the marginal kernel (which now depends on the input and the
parameters). We can compute K(X;θ) from the kernel L(X;θ) using
matrix inversion or eigendecomposition. Algorithm 4 shows how we can
use these ideas to compute the gradient of L(θ) efficiently.

In fact, note that we do not need all of K(X;θ), but only its diago-
nal. In Algorithm 4 we exploit this in the main loop, using only O(N2)
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Algorithm 4 Gradient of the log-likelihood
Input: instance (X,Y ), parameters θ
Compute L(X;θ) as in Equation (4.2)
Eigendecompose L(X;θ) =

∑N
n=1λnvnv

�
n

for i ∈ Y(X) do
Kii←

∑N
n=1

λn
λn+1v2

ni

end for
∇L(θ)←∑i∈Y f i(X) −∑iKiif i(X)
Output: gradient ∇L(θ)

multiplications rather than the O(N3) we would need to construct the
entire marginal kernel. (In the dual representation, this can be improved
further to O(ND) multiplications.) Unfortunately, these savings are
asymptotically irrelevant since we still need to eigendecompose L(X;θ),
requiring about O(N3) time (or O(D3) time for the corresponding
eigendecomposition in the dual). It is conceivable that a faster algo-
rithm exists for computing the diagonal of K(X;θ) directly, along
the lines of ideas recently proposed by [144] (which focus on sparse
matrices); however, we are not currently aware of a useful improve-
ment over Algorithm 4.

4.2.1 Experiments: Document Summarization

We demonstrate learning for the conditional DPP quality model on an
extractive multi-document summarization task using news text. The
basic goal is to generate a short piece of text that summarizes the most
important information from a news story. In the extractive setting,
the summary is constructed by stringing together sentences found in a
cluster of relevant news articles. This selection problem is a balancing
act: on the one hand, each selected sentence should be relevant, sharing
significant information with the cluster as a whole; on the other, the
selected sentences should be diverse as a group so that the summary is
not repetitive and is as informative as possible, given its length [34, 111].
DPPs are a natural fit for this task, viewed through the decomposition
of Section 3.1 [85].
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As in Section 4.1, the input X will be a cluster of documents,
and Y(X) a set of candidate sentences from those documents. In our
experiments Y(X) contains all sentences from all articles in the clus-
ter, although in general preprocessing could also be used to try to
improve the candidate set [29]. We will learn a DPP to model good
summaries Y for a given input X. Because DPPs model unordered
sets while summaries are linear text, we construct a written summary
from Y by placing the sentences it contains in the same order in which
they appeared in the original documents. This policy is unlikely to give
optimal results, but it is consistent with prior work [94] and seems
to perform well. Furthermore, it is at least partially justified by the
fact that modern automatic summary evaluation metrics like ROUGE,
which we describe later, are mostly invariant to sentence order.

We experiment with data from the multidocument summarization
task (Task 2) of the 2003 and 2004 Document Understanding Confer-
ence (DUC) [34]. The article clusters used for these tasks are taken from
the NIST TDT collection. Each cluster contains approximately ten arti-
cles drawn from the AP and New York Times newswires, and covers a
single topic over a short time span. The clusters have a mean length of
approximately 250 sentences and 5800 words. The 2003 task, which we
use for training, contains 30 clusters, and the 2004 task, which is our
test set, contains 50 clusters. Each cluster comes with four reference
human summaries (which are not necessarily formed by sentences from
the original articles) for evaluation purposes. Summaries are required
to be at most 665 characters in length, including spaces. Figure 4.1
depicts a sample cluster from the test set.

To measure performance on this task we follow the original
evaluation and use ROUGE, an automatic evaluation metric for sum-
marization [93]. ROUGE measures n-gram overlap statistics between
the human references and the summary being scored, and combines
them to produce various submetrics. ROUGE-1, for example, is a
simple unigram recall measure that has been shown to correlate quite
well with human judgments [93]. Here, we use ROUGE’s unigram
F-measure (which combines ROUGE-1 with a measure of precision)
as our primary metric for development. We refer to this measure as
ROUGE-1F. We also report ROUGE-1P and ROUGE-1R (precision
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Fig. 4.1 A sample cluster from the DUC 2004 test set, with one of the four human reference
summaries and an (artificial) extractive summary.

and recall, respectively) as well as ROUGE-2F and ROUGE-SU4F,
which include bigram match statistics and have also been shown to cor-
relate well with human judgments. Our implementation uses ROUGE
version 1.5.5 with stemming turned on, but without stopword removal.
These settings correspond to those used for the actual DUC competi-
tions [34]; however, we use a more recent version of ROUGE.

Training data Recall that our learning setup requires a training
sample of pairs (X,Y ), where Y ⊆ Y(X). Unfortunately, while the
human reference summaries provided with the DUC data are of high
quality, they are not extractive, thus they do not serve as examples of
summaries that we can actually model. To obtain high-quality extrac-
tive “oracle” summaries from the human summaries, we employ a sim-
ple greedy algorithm (Algorithm 5). On each round the sentence that
achieves maximal unigram F -measure to the human references, nor-
malized by length, is selected and added to the extractive summary.
Since high F-measure requires high precision as well as recall, we then
update the references by removing the words “covered” by the newly
selected sentence and proceed to the next round.

We can measure the success of this approach by calculating ROUGE
scores of our oracle summaries with respect to the human summaries.
Table 4.1 shows the results for the DUC 2003 training set. For reference,
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Algorithm 5 Constructing extractive training data
Input: article cluster X, human reference word counts H, character
limit b
U ←Y(X)
Y ← ∅
while U 
= ∅ do

i← argmaxi′∈U

(
ROUGE-1F(words(i′),H)√

length(i′)

)
Y ← Y ∪ {i}
H ← max(H − words(i),0)
U ← U − ({i} ∪ {i′|length(Y ) + length(i′) > b})

end while
Output: extractive oracle summary Y

Table 4.1. ROUGE scores for the best automatic system
from DUC 2003, our heuristically generated oracle extractive
summaries, and human summaries.

System ROUGE-1F ROUGE-2F ROUGE-SU4F

Machine 35.17 9.15 12.47
Oracle 46.59 16.18 19.52
Human 56.22 33.37 36.50

the table also includes the ROUGE scores of the best automatic system
from the DUC competition in 2003 (“machine”), as well as the human
references themselves (“human”). Note that, in the latter case, the
human summary being evaluated is also one of the four references
used to compute ROUGE; hence the scores are probably significantly
higher than a human could achieve in practice. Furthermore, it has
been shown that extractive summaries, even when generated optimally,
are by nature limited in quality compared with unconstrained sum-
maries [55]. Thus we believe that the oracle summaries make strong
targets for training.

Features We next describe the feature functions that we use for this
task. For diversity features φi(X), we generate standard normalized
tf–idf vectors. We tokenize the input test, remove stop words and
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punctuation, and apply a Porter stemmer.1 Then, for each word w,
the term frequency tfi(w) of w in sentence i is defined as the number
of times the word appears in the sentence, and the inverse document
frequency idf(w) is the negative logarithm of the fraction of articles in
the training set where w appears. A large value of idf(w) implies that
w is relatively rare. Finally, the vector φi(X) has one element per word,
and the value of the entry associated with word w is proportional to
tfi(w)idf(w). The scale of φi(X) is set such that ‖φi(X)‖ = 1.

Under this definition of φ, the similarity Sij between sentences i
and j is known as their cosine similarity:

Sij =
∑

w tfi(w)tfj(w)idf2(w)√∑
w tf2i (w)idf2(w)

√∑
w tf2j (w)idf2(w)

∈ [0,1]. (4.15)

Two sentences are cosine similar if they contain many of the same
words, particularly words that are uncommon (and thus more likely to
be salient).

We augment φi(X) with an additional constant feature taking the
value ρ ≥ 0, which is a hyperparameter. This has the effect of making
all sentences more similar to one another, increasing repulsion. We set
ρ to optimize ROUGE-1F score on the training set; in our experiments,
the best choice was ρ = 0.7.

We use the very standard cosine distance as our similarity metric
because we need to be confident that it is sensible; it will remain fixed
throughout the experiments. On the other hand, weights for the quality
features are learned, so we can use a variety of intuitive measures and
rely on training to find an appropriate combination. The quality fea-
tures we use are listed below. For some of the features, we make use
of cosine distances; these are computed using the same tf–idf vectors
as the diversity features. When a feature is intrinsically real-valued,
we produce a series of binary features by binning. The bin boundaries
are determined either globally or locally. Global bins are evenly spaced
quantiles of the feature values across all sentences in the training set,
while local bins are quantiles of the feature values in the current cluster
only.

1 Code for this preprocessing pipeline was provided by Hui Lin and Jeff Bilmes.
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• Constant: A constant feature allows the model to bias
toward summaries with a greater or smaller number of
sentences.

• Length: We bin the length of the sentence (in characters)
into five global bins.

• Document position: We compute the position of the sen-
tence in its original document and generate binary features
indicating positions 1–5, plus a sixth binary feature indicat-
ing all other positions. We expect that, for newswire text,
sentences that appear earlier in an article are more likely to
be useful for summarization.

• Mean cluster similarity: For each sentence we compute
the average cosine distance to all other sentences in the clus-
ter. This feature attempts to measure how well the sentence
reflects the salient words occurring most frequently in the
cluster. We use the raw score, five global bins, and ten local
bins.

• LexRank: We compute continuous LexRank scores by find-
ing the principal eigenvector of the row-normalized cosine
similarity matrix. (See Erkan and Radev [43] for details.)
This provides an alternative measure of centrality. We use
the raw score, five global bins, and five local bins.

• Personal pronouns: We count the number of personal pro-
nouns (“he”, “her”, “themselves”, etc.) appearing in each
sentence. Sentences with many pronouns may be poor for
summarization since they omit important entity names.

In total we have 40 quality features; including ρ our model has 41
parameters.

Inference At test time, we need to take the learned parameters θ and
use them to predict a summary Y for a previously unseen document
cluster X. One option is to sample from the conditional distribution,
which can be done exactly and efficiently, as described in Section 2.4.4.
However, sampling occasionally produces low-probability predictions.
We obtain better performance on this task by applying two alternative
inference techniques.
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Algorithm 6 Approximately computing the MAP summary
Input: document cluster X, parameter θ, character limit b
U ←Y(X)
Y ← ∅
while U 
= ∅ do
i← argmaxi′∈U

(Pθ(Y ∪{i}|X)−Pθ(Y |X)
length(i)

)
Y ← Y ∪ {i}
U ← U − ({i} ∪ {i′|length(Y ) + length(i′) > b})

end while
Output: summary Y

Greedy MAP approximation. One common approach to prediction in
probabilistic models is maximum a posteriori (MAP) decoding, which
selects the highest probability configuration. For practical reasons, and
because the primary metrics for evaluation were recall-based, the DUC
evaluations imposed a length limit of 665 characters, including spaces,
on all summaries. In order to compare with prior work we also apply
this limit in our tests. Thus, our goal is to find the most likely summary,
subject to a budget constraint:

Y MAP = argmax
Y

Pθ(Y |X)

s.t.
∑
i∈Y

length(i) ≤ b, (4.16)

where length(i) is the number of characters in sentence i, and b = 665
is the limit on the total length. As discussed in Section 2.4.5, comput-
ing Y MAP exactly is NP-hard, but, recalling that the optimization in
Equation (4.16) is submodular, we can approximate it through a simple
greedy algorithm (Algorithm 6).

Algorithm 6 is closely related to those given by Krause and
Guestrin [80] and especially Lin and Bilmes [94]. As discussed in Sec-
tion 2.4.5, algorithms of this type have formal approximation guar-
antees for monotone submodular problems. Our MAP problem is not
generally monotone; nonetheless, Algorithm 6 seems to work well in
practice, and is very fast (see Table 4.2).
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Minimum Bayes risk decoding. The second inference technique we
consider is minimum Bayes risk (MBR) decoding. First proposed by
Goel and Byrne [59] for automatic speech recognition, MBR decod-
ing has also been used successfully for word alignment and machine
translation [86, 87]. The idea is to choose a prediction that minimizes
a particular application-specific loss function under uncertainty about
the evaluation target. In our setting we use ROUGE-1F as a (negative)
loss function, so we have

Y MBR = argmax
Y

E[ROUGE-1F(Y,Y ∗)], (4.17)

where the expectation is over realizations of Y ∗, the true summary
against which we are evaluated. Of course, the distribution of Y ∗ is
unknown, but we can assume that our trained model Pθ(·|X) gives a
reasonable approximation. Since there are exponentially many possible
summaries, we cannot expect to perform an exact search for Y MBR;
however, we can approximate it through sampling, which is efficient.

Combining these approximations, we have the following inference
rule:

Ỹ MBR = argmax
Y r′ , r′∈{1,2,...,R}

1
R

R∑
r=1

ROUGE-1F(Y r′
,Y r), (4.18)

where Y 1,Y 2, . . . ,Y R are samples drawn from Pθ(·|X). In order to sat-
isfy the length constraint imposed by the evaluation, we consider only
samples with length between 660 and 680 characters (rejecting those
that fall outside this range), and crop Ỹ MBR to the limit of 665 bytes
if necessary. The choice of R is a trade-off between fast running time
and quality of inference. In the following section, we report results for
R = 100,1000, and 5000; Table 4.2 shows the average time required to
produce a summary under each setting. Note that MBR decoding is
easily parallelizable, but the results in Table 4.2 are for a single proces-
sor. Since MBR decoding is randomized, we report all results averaged
over 100 trials.

Results We train our model with a standard L-BFGS optimization
algorithm. We place a zero-mean Gaussian prior on the parameters θ,
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Table 4.2. The average time
required to produce a summary for
a single cluster from the DUC 2004
test set (without parallelization).

System Time (s)

dpp-greedy 0.15
dpp-mbr100 1.30
dpp-mbr1000 16.91
dpp-mbr5000 196.86

with variance set to optimize ROUGE-1F on a development subset of
the 2003 data. We learn parameters θ on the DUC 2003 corpus, and test
them using DUC 2004 data. We generate predictions from the trained
DPP using the two inference algorithms described in the previous sec-
tion, and compare their performance to a variety of baseline systems.

Our first and simplest baseline merely returns the first 665 bytes
of the cluster text. Since the clusters consist of news articles, this is
not an entirely unreasonable summary in many cases. We refer to this
baseline as begin.

We also compare against an alternative DPP-based model with
identical similarity measure and quality features, but where the qual-
ity model has been trained using standard logistic regression. To learn
this baseline, each sentence is treated as a unique instance to be classi-
fied as included or not included, with labels derived from our training
oracle. Thus, it has the advantages of a DPP at test time, but does not
take into account the diversity model while training; comparing with
this baseline allows us to isolate the contribution of learning the model
parameters in context. Note that MBR inference is impractical for this
model because its training does not properly calibrate for overall sum-
mary length, so nearly all samples are either too long or too short.
Thus, we report only the results obtained from greedy inference. We
refer to this model as lr+dpp.

Next, we employ as baselines a range of previously proposed
methods for multidocument summarization. Perhaps the simplest and
most popular is Maximum Marginal Relevance (MMR), which uses
a greedy selection process [23]. MMR relies on a similarity measure
between sentences, for which we use the cosine distance measure S,



4.2 Learning Quality 201

and a measure of relevance for each sentence, for which we use the
same logistic regression-trained quality model as above. Sentences are
chosen iteratively according to

argmax
i∈Y(X)

[
αqi(X) − (1 − α)max

j∈Y
Sij

]
, (4.19)

where Y is the set of sentences already selected (initially empty), qi(X)
is the learned quality score, and Sij is the cosine similarity between
sentences i and j. The trade-off α is optimized on a development set,
and sentences are added until the budget is full. We refer to this baseline
as lr+mmr.

We also compare against the three highestscoring systems that
actually competed in the DUC 2004 competition — peers 65, 104,
and 35 — as well as the submodular graph-based approach recently
described by Lin and Bilmes [94], which we refer to as submod1, and
the improved submodular learning approach proposed by [95], which
we denote submod2. We produced our own implementation of sub-
mod1, but rely on previously reported numbers for submod2, which
include only ROUGE-1 scores.

Table 4.3 shows the results for all methods on the DUC 2004 test
corpus. Scores for the actual DUC competitors differ slightly from the
originally reported results because we use an updated version of the
ROUGE package. Bold entries highlight the best performance in each
column; in the case of MBR inference, which is stochastic, the improve-
ments are significant at 99% confidence. The DPP models outperform
the baselines in most cases; furthermore, there is a significant boost
in performance due to the use of DPP maximum likelihood training
in place of logistic regression. MBR inference performs best, assum-
ing that we take sufficiently many samples; on the other hand, greedy
inference runs more quickly than dpp-mbr100 and produces superior
results. Relative to most other methods, the DPP model with MBR
inference seems to more strongly emphasize recall. Note that MBR
inference was performed with respect to ROUGE-1F, but could also be
run to optimize other metrics if desired.

Feature contributions. In Table 4.4 we report the performance of
dpp-greedy when different groups of features from Section 4.2.1 are
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Table 4.3. ROUGE scores on the DUC 2004 test set.

System ROUGE-1F ROUGE-1P ROUGE-1R ROUGE-2F ROUGE-SU4F

begin 32.08 31.53 32.69 6.52 10.37
lr+mmr 37.58 37.15 38.05 9.05 13.06
lr+dpp 37.96 37.67 38.31 8.88 13.13
peer 35 37.54 37.69 37.45 8.37 12.90
peer 104 37.12 36.79 37.48 8.49 12.81
peer 65 37.87 37.58 38.20 9.13 13.19
submod1 38.73 38.40 39.11 8.86 13.11
submod2 39.78 39.16 40.43 — —
dpp-greedy 38.96 38.82 39.15 9.86 13.83
dpp-mbr100 38.83 38.06 39.67 8.85 13.38
dpp-mbr1000 39.79 38.96 40.69 9.29 13.87
dpp-mbr5000 40.33 39.43 41.31 9.54 14.13

Table 4.4. ROUGE scores for dpp-greedy with features removed.

Features ROUGE-1F ROUGE-1P ROUGE-1R

All 38.96 38.82 39.15
All but length 37.38 37.08 37.72
All but position 36.34 35.99 36.72
All but similarity 38.14 37.97 38.35
All but LexRank 38.10 37.92 38.34
All but pronouns 38.80 38.67 38.98
All but similarity, LexRank 36.06 35.84 36.32

removed, in order to estimate their relative contributions. Length and
position appear to be quite important; however, although individually
similarity and LexRank scores have only a modest impact on perfor-
mance, when both are omitted the drop is significant. This suggests,
intuitively, that these two groups convey similar information — both
are essentially measures of centrality — but that this information is
important to achieving strong performance.
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k-DPPs

A determinantal point process assigns a probability to every subset
of the ground set Y. This means that, with some probability, a sample
from the process will be empty; with some probability, it will be all of Y.
In many cases this is not desirable. For instance, we might want to use
a DPP to model the positions of basketball players on a court, under
the assumption that a team tends to spread out for better coverage. In
this setting, we know that with very high probability each team will
have exactly five players on the court. Thus, if our model gives some
probability of seeing zero or fifty players, it is not likely to be a good fit.

We showed in Section 2.4.4 that there exist elementary DPPs hav-
ing fixed cardinality k; however, this is achieved only by focusing exclu-
sively (and equally) on k-specific “aspects” of the data, as represented
by eigenvectors of the kernel. Thus, for DPPs, the notions of size and
content are fundamentally intertwined. We cannot change one without
affecting the other. This is a serious limitation on the types of distribu-
tions that can be expressed; for instance, a DPP cannot even capture
the uniform distribution over sets of cardinality k.

More generally, even for applications where the number of items
is unknown, the size model imposed by a DPP may not be a good

203
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fit. We have seen that the cardinality of a DPP sample has a simple
distribution: it is the number of successes in a series of Bernoulli trials.
But while this distribution characterizes certain types of data, other
cases might look very different. For example, picnickers may tend to
stake out diverse positions in a park, but on warm weekend days there
might be hundreds of people, and on a rainy Tuesday night there are
likely to be none. This bimodal distribution is quite unlike the sum of
Bernoulli variables imposed by DPPs.

Perhaps most importantly, in some cases we do not even want
to model cardinality at all, but instead offer it as a parameter. For
example, a search engine might need to deliver ten diverse results to
its desktop users, but only five to its mobile users. This ability to
control the size of a DPP “on the fly” can be crucial in real-world
applications.

In this section we introduce k-DPPs, which address the issues
described above by conditioning a DPP on the cardinality of the ran-
dom set Y . This simple change effectively divorces the DPP content
model, with its intuitive diversifying properties, from the DPP size
model, which is not always appropriate. We can then use the DPP con-
tent model with a size model of our choosing, or simply set the desired
size based on context. The result is a significantly more expressive mod-
eling approach (which can even have limited positive correlations) and
increased control.

We begin by defining k-DPPs. The conditionalization they require,
though simple in theory, necessitates new algorithms for inference
problems like normalization and sampling. Naively, these tasks require
exponential time, but we show that through recursions for computing
elementary symmetric polynomials we can solve them exactly in poly-
nomial time. Finally, we demonstrate the use of k-DPPs on an image
search problem, where the goal is to show users diverse sets of images
that correspond to their query.

5.1 Definition

A k-DPP on a discrete set Y = {1,2, . . . ,N} is a distribution over all
subsets Y ⊆ Y with cardinality k [84]. In contrast to the standard DPP,
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which models both the size and content of a random subset Y , a k-DPP
is concerned only with the content of a random k-set. Thus, a k-DPP
is obtained by conditioning a standard DPP on the event that the set
Y has cardinality k. Formally, the k-DPP PkL gives probabilities

P kL(Y ) =
det(LY )∑

|Y ′|=k det(LY ′)
, (5.1)

where |Y | = k and L is a positive semidefinite kernel. Compared to
the standard DPP, the only changes are the restriction on Y and the
normalization constant. While in a DPP every k-set Y competes with
all other subsets of Y, in a k-DPP it competes only with sets of the
same cardinality. This subtle change has significant implications.

For instance, consider the seemingly simple distribution that is uni-
form over all sets Y ⊆ Y with cardinality k. If we attempt to build
a DPP capturing this distribution we quickly run into difficulties. In
particular, the marginal probability of any single item is k

N , so the
marginal kernel K, if it exists, must have k

N on the diagonal. Likewise,
the marginal probability of any pair of items is k(k−1)

N(N−1) , and so by sym-
metry the off-diagonal entries of K must be equal to a constant. As
a result, any valid marginal kernel has to be the sum of a constant
matrix and a multiple of the identity matrix. Since a constant matrix
has at most one nonzero eigenvalue and the identity matrix is full rank,
it is easy to show that, except in the special cases k = 0,1,N − 1, the
resulting kernel has full rank. But we know that a full-rank kernel
implies that the probability of seeing all N items together is nonzero.
Thus the desired process cannot be a DPP unless k = 0,1,N − 1, or N .
On the other hand, a k-DPP with the identity matrix as its kernel gives
the distribution we are looking for. This improved expressive power can
be quite valuable in practice.

5.1.1 Alternative Models of Size

Since a k-DPP is conditioned on cardinality, k must come from some-
where outside of the model. In many cases, k may be fixed according to
application needs, or perhaps changed on the fly by users or depending
on context. This flexibility and control is one of the major practical
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advantages of k-DPPs. Alternatively, in situations where we wish to
model size as well as content, a k-DPP can be combined with a size
model Psize that assigns a probability to every possible k ∈ {1,2, . . . ,N}:

P(Y ) = Psize(|Y |)P |Y |
L (Y ). (5.2)

Since the k-DPP is a proper conditional model, the distribution P is
well defined. By choosing Psize appropriate to the task at hand, we
can effectively take advantage of the diversifying properties of DPPs in
situations where the DPP size model is a poor fit.

As a side effect, this approach actually enables us to use k-DPPs to
build models with both negative and positive correlations. For instance,
if Psize indicates that there are likely to be either hundreds of picnickers
in the park (on a nice day) or, otherwise, just a few, then knowing that
there are 50 picnickers today implies that there are likely to be even
more. Thus, k-DPPs can yield more expressive models than DPPs in
this sense as well.

5.2 Inference

Of course, increasing the expressive power of the DPP causes us to
wonder whether, in doing so, we might have lost some of the con-
venient computational properties that made DPPs useful in the first
place. Naively, this seems to be the case; for instance, while the nor-
malizing constant for a DPP can be written in closed form, the sum
in Equation (5.1) is exponential and seems hard to simplify. In this
section, we will show how k-DPP inference can in fact be performed
efficiently, using recursions for computing the elementary symmetric
polynomials.

5.2.1 Normalization

Recall that the k-th elementary symmetric polynomial on λ1,λ2 . . . ,λN
is given by

ek(λ1,λ2, . . . ,λN ) =
∑

J⊆{1,2,...,N}
|J|=k

∏
n∈J

λn. (5.3)
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For instance,

e1(λ1,λ2,λ3) = λ1 + λ2 + λ3 (5.4)

e2(λ1,λ2,λ3) = λ1λ2 + λ1λ3 + λ2λ3 (5.5)

e3(λ1,λ2,λ3) = λ1λ2λ3. (5.6)

Proposition 5.1. The normalization constant for a k-DPP is

Zk =
∑

|Y ′|=k
det(LY ′) = ek(λ1,λ2, . . . ,λN ), (5.7)

where λ1,λ2, . . . ,λN are the eigenvalues of L.

Proof. One way to see this is to examine the characteristic polynomial
of L, det(L − λI) [54]. We can also show it directly using properties of
DPPs. Recalling that ∑

Y⊆Y
det(LY ) = det(L + I), (5.8)

we have ∑
|Y ′|=k

det(LY ′) = det(L + I)
∑

|Y ′|=k
PL(Y ′), (5.9)

where PL is the DPP with kernel L. Applying Lemma 2.5, which
expresses any DPP as a mixture of elementary DPPs, we have

det(L + I)
∑

|Y ′|=k
PL(Y ′) =

∑
|Y ′|=k

∑
J⊆{1,2,...,N}

PVJ (Y ′)
∏
n∈J

λn (5.10)

=
∑

|J |=k

∑
|Y ′|=k

PVJ (Y ′)
∏
n∈J

λn (5.11)

=
∑

|J |=k

∏
n∈J

λn, (5.12)

where we use Lemma 2.6 in the last two steps to conclude that
PVJ (Y ′) = 0 unless |J | = |Y ′|. (Recall that VJ is the set of eigenvec-
tors of L associated with λn for n ∈ J .)
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Algorithm 7 Computing the elementary symmetric polynomials
Input: k, eigenvalues λ1,λ2, . . .λN
en0 ← 1 ∀ n ∈ {0,1,2, . . . ,N}
e0l ← 0 ∀ l ∈ {1,2, . . . ,k}
for l = 1,2, . . .k do

for n = 1,2, . . . ,N do
enl ← en−1

l + λne
n−1
l−1

end for
end for
Output: ek(λ1,λ2, . . . ,λN ) = eNk

To compute the k-th elementary symmetric polynomial, we can
use the recursive algorithm given in Algorithm 7, which is based on
the observation that every set of k eigenvalues either omits λN , in
which case we must choose k of the remaining eigenvalues, or includes
λN , in which case we get a factor of λN and choose only k − 1 of
the remaining eigenvalues. Formally, letting eNk be a shorthand for
ek(λ1,λ2, . . . ,λN ), we have

eNk = eN−1
k + λNe

N−1
k−1 . (5.13)

Note that a variety of recursions for computing elementary symmetric
polynomials exist, including Newton’s identities, the Difference Algo-
rithm, and the Summation Algorithm [4]. Algorithm 7 is essentially
the Summation Algorithm, which is both asymptotically faster and
numerically more stable than the other two, since it uses only sums
and does not rely on precise cancellation of large numbers.

Algorithm 7 runs in time O(Nk). Strictly speaking, the inner loop
need only iterate up to N − k + l in order to obtain eNk at the end;
however, by going up to N we compute all of the preceding elementary
symmetric polynomials eNl along the way. Thus, by running Algorithm 7
with k = N we can compute the normalizers for k-DPPs of every size in
timeO(N2). This can be useful when k is not known in advance.

5.2.2 Sampling

Since a k-DPP is just a DPP conditioned on size, we could sample a
k-DPP by repeatedly sampling the corresponding DPP and rejecting
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the samples until we obtain one of size k. To make this more efficient,
recall from Section 2.4.4 that the standard DPP sampling algorithm
proceeds in two phases. First, a subset V of the eigenvectors of L is
selected at random, and then a set of cardinality |V | is sampled based
on those eigenvectors. Since the size of a sample is fixed in the first
phase, we could reject the samples before the second phase even begins,
waiting until we have |V | = k. However, rejection sampling is likely to
be slow. It would be better to directly sample a set V conditioned on
the fact that its cardinality is k. In this section we show how sam-
pling k eigenvectors can be done efficiently, yielding a sampling algo-
rithm for k-DPPs that is asymptotically as fast as sampling standard
DPPs.

We can formalize the intuition above by rewriting the k-DPP dis-
tribution in terms of the corresponding DPP:

PkL(Y ) =
1
eNk

det(L + I)PL(Y ) (5.14)

whenever |Y | = k, where we replace the DPP normalization constant
with the k-DPP normalization constant using Proposition 5.1. Apply-
ing Lemma 2.5 and Lemma 2.6 to decompose the DPP into elementary
parts yields

PkL(Y ) =
1
eNk

∑
|J |=k

PVJ (Y )
∏
n∈J

λn. (5.15)

Therefore, a k-DPP is also a mixture of elementary DPPs, but it
only gives nonzero weight to those of dimension k. Since the second
phase of DPP sampling provides a means for sampling from any given
elementary DPP, we can sample from a k-DPP if we can sample
index sets J according to the corresponding mixture components. Like
normalization, this is naively an exponential task, but we can do
it efficiently using the recursive properties of elementary symmetric
polynomials.

Theorem 5.2. Let J be the desired random variable, so that
Pr(J = J) = 1

eN
k

∏
n∈J λn when |J | = k, and zero otherwise. Then Algo-

rithm 8 yields a sample for J .
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Algorithm 8 Sampling k eigenvectors
Input: k, eigenvalues λ1,λ2, . . . ,λN
compute enl for l = 0,1, . . . ,k and n = 0,1, . . . ,N (Algorithm 7)
J ← ∅
l← k

for n = N,. . . ,2,1 do
if l = 0 then

break
end if
if u ∼ U [0,1] < λn

en−1
l−1
en
l

then
J ← J ∪ {n}
l← l − 1

end if
end for
Output: J

Proof. If k = 0, then Algorithm 8 returns immediately at the first iter-
ation of the loop with J = ∅, which is the only possible value of J .

If N = 1 and k = 1, then J must contain the single index 1. We have
e11 = λ1 and e00 = 1, thus λ1

e00
e11

= 1, and Algorithm 8 returns J = {1}
with probability 1.

We proceed by induction and compute the probability that Algo-
rithm 8 returns J for N > 1 and 1 ≤ k ≤ N . By inductive hypothesis, if
an iteration of the loop in Algorithm 8 begins with n < N and 0 ≤ l ≤ n,
then the remainder of the algorithm adds to J a set of elements J ′ with
probability

1
enl

∏
n′∈J ′

λn′ (5.16)

if |J ′| = l, and zero otherwise.
Now suppose that J contains N , J = J ′ ∪ {N}. Then N must be

added to J in the first iteration of the loop, which occurs with prob-

ability λN
eN−1
k−1
eN
k

. The second iteration then begins with n = N − 1 and
l = k − 1. If l is zero, we have the immediate base case; otherwise we
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have 1 ≤ l ≤ n. By the inductive hypothesis, the remainder of the algo-
rithm selects J ′ with probability

1
eN−1
k−1

∏
n∈J ′

λn (5.17)

if |J ′| = k − 1, and zero otherwise. Thus Algorithm 8 returns J with
probability (

λN
eN−1
k−1

eNk

)
1

eN−1
k−1

∏
n∈J ′

λn =
1
eNk

∏
n∈J

λn (5.18)

if |J | = k, and zero otherwise.
On the other hand, if J does not contain N , then the first iteration

must add nothing to J ; this happens with probability

1 − λN
eN−1
k−1

eNk
=
eN−1
k

eNk
, (5.19)

where we use the fact that eNk − λNeN−1
k−1 = eN−1

k . The second iteration
then begins with n = N − 1 and l = k. We observe that if N − 1 < k,
then Equation (5.19) is equal to zero, since enl = 0 whenever l > n. Thus
almost surely the second iteration begins with k ≤ n, and we can apply
the inductive hypothesis. This guarantees that the remainder of the
algorithm chooses J with probability

1
eN−1
k

∏
n∈J

λn (5.20)

whenever |J | = k. The overall probability that Algorithm 8 returns J
is therefore (

eN−1
k

eNk

)
1

eN−1
k

∏
n∈J

λn =
1
eNk

∏
n∈J

λn (5.21)

if |J | = k, and zero otherwise.

Algorithm 8 precomputes the values of e11, . . . ,e
N
k , which requires

O(Nk) time using Algorithm 7. The loop then iterates at most N times
and requires only a constant number of operations, so Algorithm 8
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runs in O(Nk) time overall. By Equation (5.15), selecting J with Algo-
rithm 8 and then sampling from the elementary DPP PVJ generates a
sample from the k-DPP. As shown in Section 2.4.4, sampling an ele-
mentary DPP can be done in O(Nk3) time (see the second loop of
Algorithm 1), so sampling k-DPPs is O(Nk3) overall, assuming that
we have an eigendecomposition of the kernel in advance. This is no
more expensive than sampling a standard DPP.

5.2.3 Marginalization

Since k-DPPs are not DPPs, they do not in general have marginal
kernels. However, we can still use their connection to DPPs to compute
the marginal probability of a set A, |A| ≤ k:
PkL(A ⊆ Y ) =

∑
|Y ′|=k−|A|

A∩Y ′=∅

PkL(Y ′ ∪ A) (5.22)

=
det(L + I)

Zk

∑
|Y ′|=k−|A|

A∩Y ′=∅

PL(Y ′ ∪ A) (5.23)

=
det(L + I)

Zk

∑
|Y ′|=k−|A|

A∩Y ′=∅

PL(Y =Y ′∪A|A ⊆ Y )PL(A ⊆ Y )

(5.24)

=
ZAk−|A|
Zk

det(L + I)
det(LA + I)

PL(A ⊆ Y ), (5.25)

where LA is the kernel, given in Equation (2.42), of the DPP condi-
tioned on the inclusion of A, and

ZAk−|A| = det(LA + I)
∑

|Y ′|=k−|A|
A∩Y ′=∅

PL(Y = Y ′ ∪ A|A ⊆ Y ) (5.26)

=
∑

|Y ′|=k−|A|
A∩Y ′=∅

det(LAY ′) (5.27)

is the normalization constant for the (k − |A|)-DPP with kernel LA.
That is, the marginal probabilities for a k-DPP are just the marginal
probabilities for a DPP with the same kernel, but with an appropriate
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change of normalizing constants. We can simplify Equation (5.25) by
observing that

det(LA)
det(L + I)

=
PL(A ⊆ Y )
det(LA + I)

, (5.28)

since the left-hand side is the probability (under the DPP with ker-
nel L) that A occurs by itself, and the right-hand side is the marginal
probability of A multiplied by the probability of observing nothing else
conditioned on observing A: 1/det(LA + I). Thus we have

PkL(A ⊆ Y ) =
ZAk−|A|
Zk

det(LA) = ZAk−|A|PkL(A). (5.29)

That is, the marginal probability of A is the probability of observing
exactly A times the normalization constant when conditioning on A.
Note that a version of this formula also holds for standard DPPs, but
there it can be rewritten in terms of the marginal kernel.

Singleton marginals Equations (5.25) and (5.29) are general but
require computing large determinants and elementary symmetric poly-
nomials, regardless of the size of A. Moreover, those quantities (for
example, det(LA + I)) must be recomputed for each unique A whose
marginal probability is desired. Thus, finding the marginal probabilities
of many small sets is expensive compared to a standard DPP, where
we need only small minors of K. However, we can derive a more effi-
cient approach in the special but useful case where we want to know
all of the singleton marginals for a k-DPP — for instance, in order to
implement quality learning as described in Section 4.2.

We start by using Equation (5.15) to write the marginal probability
of an item i in terms of a combination of elementary DPPs:

PkL(i ∈ Y ) =
1
eNk

∑
|J |=k

PVJ (i ∈ Y )
∏
n′∈J

λn′ . (5.30)

Because the marginal kernel of the elementary DPP PVJ is given by∑
n∈J vnv

�
n , we have

PkL(i ∈ Y ) =
1
eNk

∑
|J |=k

(∑
n∈J

(v�
n ei)2

) ∏
n′∈J

λn′ (5.31)
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=
1
eNk

N∑
n=1

(v�
n ei)2

∑
J⊇{n},|J |=k

∏
n′∈J

λn′ (5.32)

=
N∑
n=1

(v�
n ei)2λn

e−nk−1

eNk
, (5.33)

where e−nk−1 = ek−1(λ1,λ2, . . . ,λn−1,λn+1, . . . ,λN ) denotes the (k − 1)-
order elementary symmetric polynomial for all eigenvalues of L

except λn. Note that λne−nk−1/e
N
k is exactly the marginal probability

that n ∈ J when J is chosen using Algorithm 8; in other words, the
marginal probability of item i is the sum of the contributions (v�

n ei)2

made by each eigenvector scaled by the respective probabilities that the
eigenvectors are selected. The contributions are easily computed from
the eigendecomposition of L, thus we need only eNk and e−nk−1 for each
value of n in order to calculate the marginals for all items in O(N2)
time, or O(ND) time if the rank of L is D < N .

Algorithm 7 computes eN−1
k−1 = e−Nk−1 in the process of obtaining eNk ,

so naively we could run Algorithm 7 N times, repeatedly reordering the
eigenvectors so that each takes a turn at the last position. To compute
all of the required polynomials in this fashion would require O(N2k)
time. However, we can improve this (for small k) to O(N log(N)k2); to
do so we will make use of a binary tree on N leaves. Each node of the
tree corresponds to a set of eigenvalues of L; the leaves represent single
eigenvalues, and an interior node of the tree represents the set of eigen-
values corresponding to its descendant leaves. (See Figure 5.1.) We will
associate with each node the set of elementary symmetric polynomials
e1(Λ),e2(Λ), . . . ,ek(Λ), where Λ is the set of eigenvalues represented by
the node.

These polynomials can be computed directly for leaf nodes in con-
stant time, and the polynomials of an interior node can be computed
given those of its children using a simple recursion:

ek(Λ1 ∪ Λ2) =
k∑
l=0

el(Λ1)ek−l(Λ2). (5.34)

Thus, we can compute the polynomials for the entire tree in
O(N log(N)k2) time; this is sufficient to obtain eNk at the root node.
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Fig. 5.1 Binary tree with N = 8 leaves; interior nodes represent their descendant leaves.
Removing a path from leaf n to the root leaves logN subtrees that can be combined to
compute e−n

k−1.

However, if we now remove a leaf node corresponding to eigenvalue
n, we invalidate the polynomials along the path from the leaf to the
root; see Figure 5.1. This leaves logN disjoint subtrees which together
represent all of the eigenvalues of L, leaving out λn. We can now apply
Equation (5.34) logN times to the roots of these trees in order to obtain
e−nk−1 in O(log(N)k2) time. If we do this for each value of n, the total
additional time required is O(N log(N)k2).

The algorithm described above thus takes O(N log(N)k2) time to
produce the necessary elementary symmetric polynomials, which in
turn allow us to compute all of the singleton marginals. This is a
dramatic improvement over applying Equation (5.25) to each item
separately.

5.2.4 Conditioning

Suppose we want to condition a k-DPP on the inclusion of a particular
set A. For |A| + |B| = k we have

PkL(Y = A ∪ B|A ⊆ Y ) ∝ PkL(Y = A ∪ B) (5.35)

∝ PL(Y = A ∪ B) (5.36)

∝ PL(Y = A ∪ B|A ⊆ Y ) (5.37)

∝ det(LAB). (5.38)
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Thus the conditional k-DPP is a k − |A|-DPP whose kernel is the same
as that of the associated conditional DPP. The normalization constant
is ZAk−|A|. We can condition on excluding A in the same manner.

5.2.5 Finding the Mode

Unfortunately, although k-DPPs offer the efficient versions of DPP
inference algorithms presented above, finding the most likely set Y
remains intractable. It is easy to see that the reduction from Sec-
tion 2.4.5 still applies, since the cardinality of the Y corresponding
to an exact 3-cover, if it exists, is known. In practice we can utilize
greedy approximations, like we did for standard DPPs in Section 4.2.1.

5.3 Experiments: Image Search

We demonstrate the use of k-DPPs on an image search task [84]. The
motivation is as follows. Suppose that we run an image search engine,
where our primary goal is to deliver the most relevant possible images to
our users. Unfortunately, the query strings those users provide are often
ambiguous. For instance, a user searching for “philadelphia” might be
looking for pictures of the city skyline, street-level shots of buildings, or
perhaps iconic sights like the Liberty Bell or the Love sculpture. Fur-
thermore, even if we know the user is looking for a skyline photograph,
he or she might specifically want a daytime or nighttime shot, a par-
ticular angle, and so on. In general, we cannot expect users to provide
enough information in a textual query to identify the best image with
any certainty.

For this reason search engines typically provide a small array of
results, and we argue that, to maximize the probability of the user
being happy with at least one image, the results should be relevant
to the query but also diverse with respect to one another. That is, if
we want to maximize the proportion of users searching “philadelphia”
who are satisfied by our response, each image we return should satisfy
a large but distinct subset of those users, thus maximizing our overall
coverage. Since we want diverse results but also require control over
the number of results we provide, a k-DPP is a natural fit.
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5.3.1 Learning Setup

Of course, we do not actually run a search engine and do not have real
users. Thus, in order to be able to evaluate our model using real human
feedback, we define the task in a manner that allows us to obtain inex-
pensive human supervision via Amazon Mechanical Turk. We do this
by establishing a simple binary decision problem, where the goal is to
choose, given two possible sets of image search results, the set that is
more diverse. Formally, our labeled training data comprises compara-
tive pairs of image sets {(Y +

t ,Y
−
t )}Tt=1, where set Y +

t is preferred over
set Y −

t , |Y +
t | = |Y −

t | = k. We can measure performance on this classi-
fication task using the zero–one loss, which is zero whenever we choose
the correct set from a given pair, and one otherwise.

For this task we employ a simple method for learning a combination
of k-DPPs that is convex and seems to work well in practice. Given a set
L1,L2, . . . ,LD of “expert” kernel matrices, which are fixed in advance,
define the combination model

Pkθ =
D∑
l=1

θlPkLl
, (5.39)

where
∑D

l=1 θl = 1. Note that this is a combination of distributions,
rather than a combination of kernels. We will learn θ to optimize a
logistic loss measure on the binary task:

min
θ

L(θ) =
T∑
t=1

log(1 + e−γ[P
k
θ (Y +

t )−Pk
θ (Y −

t )])

s.t.
D∑
l=1

θl = 1, (5.40)

where γ is a hyperparameter that controls how aggressively we penalize
mistakes. Intuitively, the idea is to find a combination of k-DPPs where
the positive sets Y +

t receive higher probability than the corresponding
negative sets Y −

t . By using the logistic loss (Figure 5.2), which acts like
a smooth hinge loss, we focus on making fewer mistakes.

Because Equation (5.40) is convex in θ (it is the composition of
the convex logistic loss function with a linear function of θ), we can
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Fig. 5.2 The logistic loss function.

optimize it efficiently using projected gradient descent, where we alter-
nate taking gradient steps and projecting on the constraint

∑D
l=1 θl = 1.

The gradient is given by

∇L =
T∑
t=1

eθ
�δt

1 + eθ�δt δ
t, (5.41)

where δt is a vector with entries

δtl = −γ[PkLl
(Y +
t ) − PkLl

(Y −
t )]. (5.42)

Projection onto the simplex is achieved using standard algorithms [7].

5.3.2 Data

We create datasets for three broad image search categories, using 8–12
hand-selected queries for each category. (See Table 5.1.) For each query,
we retrieve the top 64 results from Google Image Search, restricting the
search to JPEG files that pass the strictest level of Safe Search filtering.
Of those 64 results, we eliminate any that are no longer available for
download. On average this leaves us with 63.0 images per query, with
a range of 59–64.

We then use the downloaded images to generate 960 training
instances for each category, spread evenly across the different queries.
In order to compare k-DPPs directly against baseline heuristic methods
that do not model probabilities of full sets, we generate only instances
where Y +

t and Y −
t differ by a single element. That is, the classification
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Table 5.1. Queries used for data collection.

Cars Cities Dogs

Chrysler Baltimore Beagle
Ford Barcelona Bernese
Honda London Blue Heeler
Mercedes Los Angeles Cocker Spaniel
Mitsubishi Miami Collie
Nissan New York City Great Dane
Porsche Paris Labrador
Toyota Philadelphia Pomeranian

San Francisco Poodle
Shanghai Pug
Tokyo Schnauzer
Toronto Shih Tzu

problem is effectively to choose which of two candidate images i+t , i
i
t is

a less redundant addition to a given partial result set Yt:

Y +
t = Yt ∪ {i+t } Y −

t = Yt ∪ {i−t }. (5.43)

In our experiments Yt contains five images, so k = |Y +
t | = |Y −

t | = 6.
We sample partial result sets using a k-DPP with a SIFT-based kernel
(details below) to encourage diversity. The candidates are then selected
uniformly at random from the remaining images, except for 10% of
instances that are reserved for measuring the performance of our human
judges. For those instances, one of the candidates is a duplicate image
chosen uniformly at random from the partial result set, making it the
obviously more redundant choice. The other candidate is chosen as
usual.

In order to decide which candidate actually results in the more
diverse set, we collect human diversity judgments using Amazon’s
Mechanical Turk. Annotators are drawn from the general pool of Turk
workers, and are able to label as many instances as they wish. Annota-
tors are paid $0.01 USD for each instance that they label. For practical
reasons, we present the images to the annotators at reduced scale; the
larger dimension of an image is always 250 pixels. The annotators are
instructed to choose the candidate that they feel is “less similar” to the
images in the partial result set. We do not offer any specific guidance on
how to judge similarity, since dealing with uncertainty in human users
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Fig. 5.3 Sample labeling instances from each search category. The five images on the left
form the partial result set and the two candidates are shown on the right. The candidate
receiving the majority of annotator votes has a blue border.

is central to the task. The candidate images are presented in random
order. Figure 5.3 shows a sample instance from each category.

Overall, we find that workers choose the correct image for 80.8% of
the calibration instances (that is, they choose the one not belonging to
the partial result set). This suggests only moderate levels of noise due
to misunderstanding, inattention or robot workers. However, for non-
calibration instances the task is inherently difficult and subjective. To
keep noise in check, we have each instance labeled by five independent
judges, and keep only those instances where four or more judges agree.
In the end this leaves us with 408–482 labeled instances per category,
or about half of the original instances.

5.3.3 Kernels

We define a set of 55 “expert” similarity kernels for the collected images,
which form the building blocks of our combination model and baseline
methods. Each kernel Lf is the Gram matrix of some feature func-
tion f ; that is, Lf

ij = f(i) · f(j) for images i and j. We therefore specify
the kernels through the feature functions used to generate them. All of
our feature functions are normalized so that ‖f(i)‖2 = 1 for all i; this
ensures that no image is a priori more likely than any other. Implicitly,
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thinking in terms of the decomposition in Section 3.1, we are assuming
that all of the images in our set are equally relevant in order to isolate
the modeling of diversity. This assumption is at least partly justified
by the fact that our images come from actual Google searches, and are
thus presumably relevant to the query.

We use the following feature functions, which derive from standard
image processing and feature extraction methods:

• Color (2 variants): Each pixel is assigned a coordinate in
three-dimensional Lab color space. The colors are then sorted
into axis-aligned bins, producing a histogram of either 8 or
64 dimensions.

• SIFT (2 variants): The images are processed with the vlfeat
toolbox to obtain sets of 128-dimensional SIFT descriptors
[96, 150]. The descriptors for a given category are combined,
subsampled to a set of 25,000, and then clustered using
k-means into either 256 or 512 clusters. The feature vector for
an image is the normalized histogram of the nearest clusters
to the descriptors in the image.

• GIST: The images are processed using code from Oliva and
Torralba [118] to yield 960-dimensional GIST feature vec-
tors characterizing properties like “openness,” “roughness,”
“naturalness,” and so on.

In addition to the five feature functions described above, we include
another five that are identical but focus only on the center of the image,
defined as the centered rectangle with dimensions half those of the orig-
inal image. This gives our first ten kernels. We then create 45 pairwise
combination kernels by concatenating every possible pair of the ten
basic feature vectors. This technique produces kernels that synthesize
more than one source of information, offering greater flexibility.

Finally, we augment our kernels by adding a constant hyperparam-
eter ρ to each entry. ρ acts a knob for controlling the overall prefer-
ence for diversity; as ρ increases, all images appear more similar, thus
increasing repulsion. In our experiments, ρ is chosen independently
for each method and each category to optimize performance on the
training set.
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5.3.4 Methods

We test four different methods. Two use k-DPPs and two are derived
from Maximum Marginal Relevance (MMR) [23]. For each approach,
we test both the single best expert kernel on the training data and
a learned combination of kernels. All methods were tuned separately
for each of the three query categories. On each run a random 25% of
the labeled examples are reserved for testing, and the remaining 75%
form the training set used for setting hyperparameters and training.
Recall that Yt is the five-image partial result set for instance t, and let
Ct = {i+t , i−t } denote the set of two candidates images, where i+t is the
candidate preferred by the human judges.

Best k-DPP Given a single kernel L, the k-DPP prediction is

kDPPt = argmax
i∈Ct

P6
L(Yt ∪ {i}). (5.44)

We select the kernel with the best zero–one accuracy on the training
set, and apply it to the test set.

Mixture of k-DPPs We apply our learning method to the full set
of 55 kernels, optimizing Equation (5.40) on the training set to obtain
a 55-dimensional mixture vector θ. We set γ to minimize the zero–
one training loss. We then take the learned θ and apply it to making
predictions on the test set:

kDPPmixt = argmax
i∈Ct

55∑
l=1

θlP6
Ll

(Yt ∪ {i}). (5.45)

Best MMR Recall that MMR is a standard, heuristic technique for
generating diverse sets of search results. The idea is to build a set iter-
atively by adding on each round a result that maximizes a weighted
combination of relevance (with respect to the query) and diversity, mea-
sured as the maximum similarity with any of the previously selected
results. (See Section 4.2.1 for more details about MMR.) For our exper-
iments, we assume relevance is uniform; hence we merely need to
decide which of the two candidates has the smaller maximum similarity
with the partial result set. Thus, for a given kernel L, the MMR
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prediction is

MMRt = argmin
i∈Ct

[
max
j∈Yt

Lij

]
. (5.46)

As for the k-DPP, we select the single best kernel on the training set,
and apply it to the test set.

Mixture MMR We can also attempt to learn a mixture of similar
kernels for MMR. We use the same training approach as for k-DPPs,
but replace the probability score P kθ (Yy ∪ {i}) with the negative cost

−cθ(Yt, i) = −max
j∈Yt

D∑
l=1

θl[Ll]ij , (5.47)

which is just the negative similarity of item i to the set Yt under the
combined kernel metric. Significantly, this substitution makes the opti-
mization nonsmooth and nonconvex, unlike the k-DPP optimization.
In practice this means that the global optimum is not easily found.
However, even a local optimum may provide advantages over the single
best kernel. In our experiments we use the local optimum found by pro-
jected gradient descent starting from the uniform kernel combination.

5.3.5 Results

Table 5.2 shows the mean zero–one accuracy of each method for each
query category, averaged over 100 random train/test splits. Statisti-
cal significance is computed by bootstrapping. Regardless of whether
we learn a mixture, k-DPPs outperform MMR on two of the three
categories, significant at 99% confidence. In all cases, the learned mix-
ture of k-DPPs achieves the best performance. Note that, because the
decision being made for each instance is binary, 50% is equivalent to
random performance. Thus, the numbers in Table 5.2 suggest that this
is a rather difficult task, a conclusion supported by the rates of noise
exhibited by the human judges. However, the changes in performance
due to learning and the use of k-DPPs are more obviously significant
when measured as improvements above this baseline level. For example,
in the cars category our mixture of k-DPPs performs 14.58 percentage
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Table 5.2. Percentage of real-world image search examples
judged the same way as the majority of human annotators.
Bold results are significantly higher than others in the same
row with 99% confidence.

Best Best Mixture Mixture
Category MMR k-DPP MMR k-DPP

cars 55.95 57.98 59.59 64.58
cities 56.48 56.31 60.99 61.29
dogs 56.23 57.70 57.39 59.84

Fig. 5.4 Samples from the k-DPP mixture model.

points better than random versus 9.59 points for MMR with a mix-
ture of kernels. Figure 5.4 shows some actual samples drawn using the
k-DPP sampling algorithm.
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Table 5.3. Kernels receiving the highest
average weights for each category (shown in
parentheses). Ampersands indicate kernels
generated from pairs of feature functions.

color-8-center & sift-256 (0.13)
cars color-8-center & sift-512 (0.11)

color-8-center (0.07)

sift-512-center (0.85)
cities gist (0.08)

color-8-center & gist (0.03)

color-8-center (0.39)
dogs color-8-center & sift-512 (0.21)

color-8-center & sift-256 (0.20)

Table 5.3 shows, for the k-DPP mixture model, the kernels receiv-
ing the highest weights for each search category (on average over 100
train/test splits). Combined-feature kernels appear to be useful, and
the three categories exhibit significant differences in what annotators
deem diverse, as we might expect.

We can also return to our original motivation and try to measure
how well each method “covers” the space of likely user intentions. Since
we do not have access to real users who are searching for the queries in
our dataset, we instead simulate them by imagining that each is looking
for a particular target image drawn randomly from the images in our
collection. For instance, given the query “philadelphia” we might draw
a target image of the Love sculpture, and then evaluate each method
on whether it selects an image of the Love sculpture, i.e., whether it
satisfies that virtual user. More generally, we will simply record the
maximum similarity of any image in the result set to the target image.
We expect better methods to show higher similarity when averaged
over a large number of such users.

We consider only the mixture models here, since they perform best.
For each virtual user, we sample a ten-image result set YDPP using the
mixture k-DPP, and select a second ten-image result set YMMR using
the mixture MMR. For MMR, the first image is selected uniformly at
random, since they are assumed to be uniformly relevant. Subsequent
selections are deterministic. Given a target image i drawn uniformly at
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Table 5.4. The percentage of virtual users
whose desired image is more similar to the
k-DPP results than the MMR results. Above 50
indicates better k-DPP performance; below 50
indicates better MMR performance. The results
for the 55 individual expert kernels are averaged
in the first column.

Single kernel Uniform MMR
Category (average) mixture mixture

cars 57.58 68.31 58.15
cities 59.00 64.76 62.32
dogs 57.78 62.12 57.86

random, we then compute similarities

sDPP(i) = max
j∈YDPP

Lij sMMR(i) = max
j∈YMMR

Lij (5.48)

for a particular similarity kernel L. We report the fraction of the time
that sDPP(i) > sMMR(i); that is, the fraction of the time that our vir-
tual user would be better served by the k-DPP model. Because we
have no gold standard kernel L for measuring similarity, we try several
possibilities, including all 55 expert kernels, a uniform combination of
the expert kernels, and the combination learned by MMR. (Note that
the mixture k-DPP does not learn a kernel combination, hence there
is no corresponding mixture to try here.) Table 5.4 shows the results,
averaged across all of the virtual users (i.e., all the images in our col-
lection). Even when using the mixture learned to optimize MMR itself,
the k-DPP does a better job of covering the space of possible user
intentions. All results in Table 5.4 are significantly higher than 50% at
99% confidence.



6
Structured DPPs

We have seen in the preceding sections that DPPs offer polynomial-time
inference and learning with respect to N , the number of items in the
ground set Y. This is important since DPPs model an exponential num-
ber of subsets Y ⊆ Y, so naive algorithms would be intractable. And
yet, we can imagine DPP applications for which even linear time is too
slow. For example, suppose that after modeling the positions of basket-
ball players, as proposed in the previous section, we wanted to take our
analysis one step further. An obvious extension is to realize that a player
does not simply occupy a single position, but instead moves around
the court over time. Thus, we might want to model not just diverse
sets of positions on the court, but diverse sets of paths around the
court during a game. While we could reasonably discretize the possible
court positions to a manageable number M , the number of paths over,
say, 100 time steps would be M100, making it almost certainly impos-
sible to enumerate them all, let alone build an M100 ×M100 kernel
matrix.

However, in this combinatorial setting we can take advantage of
the fact that, even though there are exponentially many paths, they
are structured; that is, every path is built from a small number of the
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same basic components. This kind of structure has frequently been
exploited in machine learning, for example, to find the best translation
of a sentence, or to compute the marginals of a Markov random field. In
such cases structure allows us to factor computations over exponentially
many possibilities in an efficient way. And yet, the situation for struc-
tured DPPs is even worse: when the number of items in Y is exponen-
tial, we are actually modeling a distribution over the doubly exponential
number of subsets of an exponential Y. If there areM100 possible paths,
there are 2M

100
subsets of paths, and a DPP assigns a probability to

every one. This poses an extreme computational challenge.
In order to develop efficient structured DPPs (SDPPs), we will

therefore need to combine the dynamic programming techniques used
for standard structured prediction with the algorithms that make DPP
inference efficient. We will show how this can be done by applying
the dual DPP representation from Section 3.3, which shares spectral
properties with the kernel L but is manageable in size, and the use
of second-order message passing, where the usual sum-product or
min-sum semiring is replaced with a special structure that computes
quadratic quantities over a factor graph [92]. In the end, we will demon-
strate that it is possible to normalize and sample from an SDPP in
polynomial time.

Structured DPPs open up a large variety of new possibilities for
applications; they allow us to model diverse sets of essentially any struc-
tured objects. For instance, we could find not only the best translation
but a diverse set of high-quality translations for a sentence, perhaps
to aid a human translator. Or, we could study the distinct proteins
coded by a gene under alternative RNA splicings, using the diversify-
ing properties of DPPs to cover the large space of possibilities with
a small representative set. Later, we will apply SDPPs to three real-
world tasks: identifying multiple human poses in images, where there
are combinatorially many possible poses, and we assume that the poses
are diverse in that they tend not to overlap; identifying salient lines of
research in a corpus of computer science publications, where the struc-
tures are citation chains of important papers, and we want to find a
small number of chains that cover the major topic in the corpus; and
building threads from news text, where the goal is to extract from a
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large corpus of articles the most significant news stories, and for each
story present a sequence of articles covering the major developments of
that story through time.

We begin by defining SDPPs and stating the structural assumptions
that are necessary to make inference efficient; we then show how these
assumptions give rise to polynomial-time algorithms using second-order
message passing. We discuss how sometimes even these polynomial
algorithms can be too slow in practice, but demonstrate that by apply-
ing the technique of random projections (Section 3.4) we can dramati-
cally speed up computation and reduce memory use while maintaining
a close approximation to the original model [83]. Finally, we show how
SDPPs can be applied to the experimental settings described above,
yielding improved results compared with a variety of standard and
heuristic baseline approaches.

6.1 Factorization

In Section 2.4 we saw that DPPs remain tractable on modern computers
for N up to around 10,000. This is no small feat, given that the number
of subsets of 10,000 items is roughly the number of particles in the
observable universe to the 40th power. Of course, this is not magic but
simply a consequence of a certain type of structure; that is, we can
perform inference with DPPs because the probabilities of these subsets
are expressed as combinations of only a relatively small set of O(N2)
parameters. In order to make the jump now to ground sets Y that are
exponentially large, we will need to make a similar assumption about
the structure of Y itself. Thus, a structured DPP (SDPP) is a DPP
in which the ground set Y is given implicitly by combinations of a set
of parts. For instance, the parts could be positions on the court, and
an element of Y a sequence of those positions. Or the parts could be
rules of a context-free grammar, and then an element of Y might be a
complete parse of a sentence. This assumption of structure will give us
the algorithmic leverage we need to efficiently work with a distribution
over a doubly exponential number of possibilities.

Because elements of Y are now structures, we will no longer think
of Y = {1,2, . . . ,N}; instead, each element y ∈ Y is a structure given
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by a sequence of R parts (y1,y2, . . . ,yR), each of which takes a value
from a finite set of M possibilities. For example, if y is the path of
a basketball player, then R is the number of time steps at which the
player’s position is recorded, and yr is the player’s discretized position
at time r. We will use yi to denote the i-th structure in Y under
an arbitrary ordering; thus Y = {y1,y2, . . . ,yN}, where N = MR. The
parts of yi are denoted yir.

An immediate challenge is that the kernel L, which has N2 entries,
can no longer be written down explicitly. We therefore define its entries
using the quality/diversity decomposition presented in Section 3.1.
Recall that this decomposition gives the entries of L as follows:

Lij = q(yi)φ(yi)
�φ(yj)q(yj), (6.1)

where q(yi) is a nonnegative measure of the quality of structure yi,
and φ(yi) is a D-dimensional vector of diversity features so that
φ(yi)�φ(yj) is a measure of the similarity between structures yi and yj .
We cannot afford to specify q and φ for every possible structure, but we
can use the assumption that structures are built from parts to define a
factorization, analogous to the factorization over cliques that give rise
to Markov random fields.

Specifically, we assume that the model decomposes over a set of
factors F , where a factor α ∈ F is a small subset of the parts of a struc-
ture. (Keeping the factors small will ensure that the model is tractable.)
We denote by yα the collection of parts of y that are included in factor
α; then the factorization assumption is that the quality score decom-
poses multiplicatively over parts, and the diversity features decompose
additively:

q(y) =
∏
α∈F

qα(yα) (6.2)

φ(y) =
∑
α∈F

φα(yα). (6.3)

We argue that these are quite natural factorizations. For instance, in
our player tracking example we might have a positional factor for each
time r, allowing the quality model to prefer paths that go through cer-
tain high-traffic areas, and a transitional factor for each pair of times
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(r − 1, r), allowing the quality model to enforce the smoothness of a
path over time. More generally, if the parts correspond to cliques in
a graph, then the quality scores can be given by a standard log-linear
Markov random field (MRF), which defines a multiplicative distribu-
tion over structures that give labelings of the graph. Thus, while in
Section 3.2 we compared DPPs and MRFs as alternative models for the
same binary labeling problems, SDPPs can also be seen as an extension
to MRFs, allowing us to take a model of individual structures and use
it as a quality measure for modeling diverse sets of structures.

Diversity features, on the other hand, decompose additively, so we
can think of them as global feature functions defined by summing local
features, again as done in standard structured prediction. For example,
φr(yr) could track the coarse-level position of a player at time r, so
that paths passing through similar positions at similar times are less
likely to co-occur. Note that, in contrast to the unstructured case, we
do not generally have ‖φ(y)‖ = 1, since there is no way to enforce
such a constraint under the factorization in Equation (6.3). Instead,
we simply set the factor features φα(yα) to have unit norm for all
α and all possible values of yα. This slightly biases the model toward
structures that have the same (or similar) features at every factor, since
such structures maximize ‖φ‖. However, the effect of this bias seems to
be minor in practice.

As for unstructured DPPs, the quality and diversity models com-
bine to produce balanced, high-quality, diverse results. However, in the
structured case the contribution of the diversity model can be espe-
cially significant due to the combinatorial nature of the items in Y.
For instance, imagine taking a particular high-quality path and per-
turbing it slightly, say by shifting the position at each time step by a
small random amount. This process results in a new and distinct path,
but is unlikely to have a significant effect on the overall quality: the
path remains smooth and goes through roughly the same positions. Of
course, this is not unique to the structured case; we can have similar
high-quality items in any DPP. What makes the problem especially
serious here is that there is a combinatorial number of such slightly
perturbed paths; the introduction of structure dramatically increases
not only the number of items in Y, but also the number of subtle
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variations that we might want to suppress. Furthermore, factored dis-
tributions over structures are often very peaked due to the geometric
combination of quality scores across many factors, so variations of the
most likely structure can be much more probable than any real alter-
native. For these reasons independent samples from an MRF can often
look nearly identical; a sample from an SDPP, on the other hand, is
much more likely to contain a truly diverse set of structures.

6.1.1 Synthetic Example: Particle Tracking

Before describing the technical details needed to make SDPPs com-
putationally efficient, we first develop some intuition by studying the
results of the model as applied to a synthetic motion tracking task,
where the goal is to follow a collection of particles as they travel in a
one-dimensional space over time. This is essentially a simplified ver-
sion of our player tracking example, but with the motion restricted to
a line. We will assume that a path y has 50 parts, where each part
yr ∈ {1,2, . . . ,50} is the particle’s position at time step r discretized
into one of 50 locations. The total number of possible trajectories in
this setting is 5050, and we will be modeling 25050

possible sets of tra-
jectories. We define positional and transitional factors

F = {{r} | r = 1,2, . . . ,50} ∪ {{r − 1, r} | r = 2,3, . . . ,50}. (6.4)

While a real tracking problem would involve quality scores q(y) that
depend on some observations — for example, measurements over time
from a set of physical sensors, or perhaps a video feed from a basketball
game — for simplicity we determine the quality of a trajectory here
using only its starting position and a measure of smoothness over time.
Specifically, we have

q(y) = q1(y1)
50∏
r=2

q(yr−1,yr), (6.5)

where the initial quality score q1(y1) is given by a smooth trimodal
function with a primary mode at position 25 and secondary modes at
positions 10 and 40, depicted by the blue curves on the left side of
Figure 6.1, and the quality scores for all other positional factors are
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Sampled particle trajectories (position vs. time)

Fig. 6.1 Sets of particle trajectories sampled from an SDPP (top row) and independently
using only quality scores (bottom row). The curves to the left indicate quality scores for
the initial positions of the particles.

fixed to one and have no effect. The transition quality is the same at
all time steps, and given by q(yr−1,yr) = fN (yr−1 − yr), where fN is
the density function of the normal distribution; that is, the quality of a
transition is maximized when the particle does not change location, and
decreases as the particle moves further and further from its previous
location. In essence, high-quality paths start near the central position
and move smoothly through time.

We want trajectories to be considered similar if they travel through
similar positions, so we define a 50-dimensional diversity feature vector
as follows:

φ(y) =
50∑
r=1

φr(yr) (6.6)

φrl(yr) ∝ fN (l − yr), l = 1,2, . . . ,50. (6.7)

Intuitively, feature l is activated when the trajectory passes near posi-
tion l, so trajectories passing through nearby positions will activate
the same features and thus appear similar in the diversity model. Note
that for simplicity, the time at which a particle reaches a given position
has no effect on the diversity features. The diversity features for the
transitional factors are zero and have no effect.
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We use the quality and diversity models specified above to define
our SDPP. In order to obtain good results for visualization, we scale
the kernel so that the expected number of trajectories in a sample
from the SDPP is five. We then apply the algorithms developed later
to draw samples from the model. The first row of Figure 6.1 shows the
results, and for comparison each corresponding panel on the second
row shows an equal number of trajectories sampled independently, with
probabilities proportional to their quality scores. As evident from the
figure, trajectories sampled independently tend to cluster in the middle
region due to the strong preference for this starting position. The SDPP
samples, however, are more diverse, tending to cover more of the space
while still respecting the quality scores — they are still smooth, and
still tend to start near the center.

6.2 Second-order Message Passing

The central computational challenge for SDPPs is the fact that
N = MR is exponentially large, making the usual inference algorithms
intractable. However, we showed in Section 3.3 that DPP inference can
be recast in terms of a smaller dual representation C; recall that, if
B is the D × N matrix whose columns are given by Byi

= q(yi)φ(yi),
then L = B�B and

C = BB� (6.8)

=
∑
y∈Y

q2(y)φ(y)φ(y)�. (6.9)

Of course, for the dual representation to be of any use we must be
able to efficiently compute C. If we think of q2α(yα) as the factor poten-
tials of a graphical model p(y) ∝∏α∈F q

2
α(yα), then computing C is

equivalent to computing second moments of the diversity features under
p (up to normalization). Since the diversity features factor additively,
C is quadratic in the local diversity features φα(yα). Thus, we could
naively calculate C by computing the pairwise marginals p(yα,yα′) for
all realizations of the factors α,α′ and, by linearity of expectations,
adding up their contributions:

C ∝
∑
α,α′

∑
yα,yα′

p(yα,yα′)φα(yα)φα′(yα′)�, (6.10)
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where the proportionality is due to the normalizing constant of p(y).
However, this sum is quadratic in the number of factors and their pos-
sible realizations, and can therefore be expensive when structures are
large.

Instead, we can substitute the factorization from Equation (6.3) into
Equation (6.9) to obtain

C =
∑
y∈Y

(∏
α∈F

q2α(yα)

)(∑
α∈F

φα(yα)

)(∑
α∈F

φα(yα)

)�
. (6.11)

It turns out that this expression is computable in linear time using a
second-order message passing algorithm.

Second-order message passing was first introduced by Li and Eis-
ner [92]. The main idea is to compute second-order statistics over
a graphical model by using the standard belief propagation message
passing algorithm, but with a special semiring in place of the usual
sum-product or max-product. This substitution makes it possible to
compute quantities of the form

∑
y∈Y

(∏
α∈F

pα(yα)

)(∑
α∈F

aα(yα)

)(∑
α∈F

bα(yα)

)
, (6.12)

where pα are nonnegative and aα and bα are arbitrary functions. Note
that we can think of pα as defining a multiplicatively decomposed func-
tion

p(y) =
∏
α∈F

pα(yα), (6.13)

and aα and bα as defining corresponding additively decomposed func-
tions a and b.

We begin by defining the notion of a factor graph, which provides
the structure for all message passing algorithms. We then describe
standard belief propagation on factor graphs, and show how it can be
defined in a general way using semirings. Finally we demonstrate that
belief propagation using the semiring proposed by Li and Eisner [92]
computes quantities of the form in Equation (6.12).
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6.2.1 Factor Graphs

Message passing operates on factor graphs. A factor graph is an undi-
rected bipartite graph with two types of vertices: variable nodes and
factor nodes. Variable nodes correspond to the parts of the structure
being modeled; for the SDPP setup described above, a factor graph
contains R variable nodes, each associated with a distinct part r. Sim-
ilarly, each factor node corresponds to a distinct factor α ∈ F . Every
edge in the graph connects a variable node to a factor node, and an
edge exists between variable node r and factor node α if and only if
r ∈ α. Thus, the factor graph encodes the relationships between parts
and factors. Figure 6.2 shows an example factor graph for the tracking
problem from Section 6.1.1.

It is obvious that the computation of Equation (6.12) cannot be
efficient when factors are allowed to be arbitrary, since in the limit
a factor could contain all parts and we could assign arbitrary values
to every configuration y. Thus we will assume that the degree of the
factor nodes is bounded by a constant c. (In Figure 6.2, as well as all of
the experiments we run, we have c = 2.) Furthermore, message-passing
algorithms are efficient whenever the factor graph has low treewidth,
or, roughly, when only small sets of nodes need to be merged to obtain a
tree. Going forward we will assume that the factor graph is a tree, since
any low-treewidth factor graph can be converted into an equivalent
factor tree with bounded factors using the junction tree algorithm [89].

6.2.2 Belief Propagation

We now describe the basic belief propagation algorithm, first intro-
duced by Pearl [119]. Suppose each factor has an associated real-valued

Fig. 6.2 A sample factor graph for the tracking problem. Variable nodes are circular and
factor nodes are square. Positional factors that depend only on a single part appear in the
top row; binary transitional factors appear between parts in the second row.
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weight function wα(yα), giving rise to the multiplicatively decomposed
global weight function

w(y) =
∏
α∈F

wα(yα). (6.14)

Then the goal of belief propagation is to efficiently compute sums of
w(y) over combinatorially large sets of structures y.

We will refer to a structure y as an assignment to the variable nodes
of the factor graph, since it defines a value yr for every part. Likewise
we can think of yα as an assignment to the variable nodes adjacent
to α, and yr as an assignment to a single variable node r. We use the
notation yα ∼ yr to indicate that yα is consistent with yr, in the sense
that it assigns the same value to variable node r. Finally, denote by
F (r) the set of factors in which variable r participates.

The belief propagation algorithm defines recursive message func-
tions m to be passed along edges of the factor graph; the formula for
the message depends on whether it is traveling from a variable node to
a factor node, or vice versa:

• From a variable r to a factor α:

mr→α(yr) =
∏

α′∈F (r)−{α}
mα′→r(yr) (6.15)

• From a factor α to a variable r:

mα→r(yr) =
∑

yα∼yr


wα(yα)

∏
r′∈α−{r}

mr′→α(yr′)


 (6.16)

Intuitively, an outgoing message summarizes all of the messages
arriving at the source node, excluding the one coming from the target
node. Messages from factor nodes additionally incorporate information
about the local weight function.

Belief propagation passes these messages in two phases based on
an arbitrary orientation of the factor tree. In the first phase, called
the forward pass, messages are passed upward from the leaves to the
root. In the second phase, or backward pass, the messages are passed
downward, from the root to the leaves. Upon completion of the second
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phase one message has been passed in each direction along every edge in
the factor graph, and it is possible to prove using an inductive argument
that, for every yr, ∏

α∈F (r)

mα→t(yr) =
∑
y∼yr

∏
α∈F

wα(yα). (6.17)

If we think of the wα as potential functions, then Equation (6.17) gives
the (unnormalized) marginal probability of the assignment yr under a
Markov random field.

Note that the algorithm passes two messages per edge in the factor
graph, and each message requires considering at most M c assignments,
therefore its running time is O(M cR). The sum on the right-hand
side of Equation (6.17), however, is exponential in the number of
parts. Thus belief propagation offers an efficient means of computing
certain combinatorial quantities that would naively require exponential
time.

6.2.3 Semirings

In fact, the belief propagation algorithm can be easily generalized
to operate over an arbitrary semiring, thus allowing the same basic
algorithm to perform a variety of useful computations. Recall that a
semiring 〈W,⊕,⊗,0,1〉 comprises a set of elements W , an addition
operator ⊕, a multiplication operator ⊗, an additive identity 0, and
a multiplicative identity 1 satisfying the following requirements for all
a,b,c ∈W :

• Addition is associative and commutative, with identity 0:

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c (6.18)

a ⊕ b = b ⊕ a (6.19)

a ⊕ 0 = a (6.20)

• Multiplication is associative, with identity 1:

a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c (6.21)

a ⊗ 1 = 1 ⊗ a = a (6.22)
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• Multiplication distributes over addition:

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) (6.23)

(a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) (6.24)

• 0 is absorbing under multiplication:

a ⊗ 0 = 0 ⊗ a = 0 (6.25)

Obviously these requirements are met when W = R and multiplication
and addition are the usual arithmetic operations; this is, the standard
sum-product semiring. We also have, for example, the max-product
semiring, where W = [0,∞), addition is given by the maximum opera-
tor with identity element 0, and multiplication is as before.

We can rewrite the messages defined by belief propagation in terms
of these more general operations. For wα(yα) ∈W , we have

mr→α(yr) =
⊗

α′∈F (r)−{α}
mα′→r(yr) (6.26)

mα→r(yr) =
⊕

yα∼yr


wα(yα) ⊗

⊗
r′∈α−{r}

mr′→α(yr′)


. (6.27)

As before, we can pass messages forward and then backward through
the factor tree. Because the properties of semirings are sufficient to
preserve the inductive argument, we then have the following analog of
Equation (6.17): ⊗

α∈F (r)

mα→r(yr) =
⊕
y∼yr

⊗
α∈F

wα(yα). (6.28)

We have seen that Equation (6.28) computes marginal probabilities
under the sum-product semiring, but other semirings give rise to useful
results as well. Under the max-product semiring, for instance, Equa-
tion (6.28) is the so-called max-marginal — the maximum unnormal-
ized probability of any single assignment y consistent with yr. In the
next section we take this one step further, and show how a carefully
designed semiring will allow us to sum second-order quantities across
exponentially many structures y.



240 Structured DPPs

6.2.4 Second-order Semiring

Li and Eisner [92] proposed the following second-order semiring over
four-tuples (q,φ,ψ,c) ∈W = R

4:

(q1,φ1,ψ1, c1) ⊕ (q2,φ2,ψ2, c2) = (q1 + q2, φ1 + φ2, ψ1 + ψ2, c1 + c2)

(6.29)

(q1,φ1,ψ1, c1) ⊗ (q2,φ2,ψ2, c2) = (q1q2, q1φ2 + q2φ1, q1ψ2 + q2ψ1,

q1c2 + q2c1 + φ1ψ2 + φ2ψ1) (6.30)

0 = (0,0,0,0) (6.31)

1 = (1,0,0,0) (6.32)

It is easy to verify that the semiring properties hold for these opera-
tions. Now, suppose that the weight function for a factor α is given by

wα(yα) = (pα(yα), pα(yα)aα(yα), pα(yα)bα(yα),

pα(yα)aα(yα)bα(yα)), (6.33)

where pα, aα, and bα are as before. Then wα(yα) ∈W , and we can get
some intuition about the multiplication operator by observing that the
fourth component of wα(yα) ⊗ wα′(yα′) is

pα(yα)[pα′(yα′)aα′(yα′)bα′(yα′)] + pα′(yα′)[pα(yα)aα(yα)bα(yα)]

+[pα(yα)aα(yα)][pα′(yα′)bα′(yα′)]

+[pα′(yα′)aα′(yα′)][pα(yα)bα(yα)] (6.34)

= pα(yα)pα′(yα′)[aα(yα) + aα′(yα′)][bα(yα) + bα′(yα′)]. (6.35)

In other words, multiplication in the second-order semiring combines
the values of p multiplicatively and the values of a and b additively,
leaving the result in the fourth component. It is not hard to extend
this argument inductively and show that the fourth component of⊗

α∈F wα(yα) is given in general by(∏
α∈F

pα(yα)

)(∑
α∈F

aα(yα)

)(∑
α∈F

bα(yα)

)
. (6.36)



6.3 Inference 241

Thus, by Equation (6.28) and the definition of ⊕, belief propagation
with the second-order semiring yields messages that satisfy
 ⊗
α∈F (r)

mα→r(yr)




4

=
∑
y∼yr

(∏
α∈F

pα(yα)

)(∑
α∈F

aα(yα)

)(∑
α∈F

bα(yα)

)
.

(6.37)
Note that multiplication and addition remain constant-time opera-
tions in the second-order semiring, thus belief propagation can still
be performed in time linear in the number of factors. In the following
section we will show that the dual representation C, as well as related
quantities needed to perform inference in SDPPs, takes the form of
Equation (6.37); thus second-order message passing will be an impor-
tant tool for efficient SDPP inference.

6.3 Inference

The factorization proposed in Equation (6.3) gives a concise defini-
tion of a structured DPP for an exponentially large Y; remarkably,
under suitable conditions it also gives rise to tractable algorithms for
normalizing the SDPP, computing marginals, and sampling. The only
restrictions necessary for efficiency are the ones we inherit from belief
propagation: the factors must be of bounded size so that we can enu-
merate all of their possible configurations, and together they must form
a low-treewidth graph on the parts of the structure. These are precisely
the same conditions needed for efficient graphical model inference [78],
which is generalized by inference in SDPPs.

6.3.1 Computing C

As we saw in Section 3.3, the dual representation C is sufficient to
normalize and marginalize an SDPP in time constant in N . Recall
from Equation (6.11) that the dual representation of an SDPP can be
written as

C =
∑
y∈Y

(∏
α∈F

q2α(yα)

)(∑
α∈F

φα(yα)

)(∑
α∈F

φα(yα)

)�
, (6.38)
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which is of the form required to apply second-order message passing.
Specifically, we can compute for each pair of diversity features (a,b)
the value of

∑
y∈Y

(∏
α∈F

q2α(yα)

)(∑
α∈F

φαa(yα)

)(∑
α∈F

φαb(yα)

)
(6.39)

by summing Equation (6.37) over the possible assignments yr, and
then simply assemble the results into the matrix C. Since there are
D(D+1)

2 unique entries in C and message passing runs in time O(M cR),
computing C in this fashion requires O(D2M cR) time.

We can make several practical optimizations to this algorithm,
though they will not affect the asymptotic performance. First, we note
that the full set of messages at any variable node r is sufficient to
compute Equation (6.39). Thus, during message passing we need only
perform the forward pass; at that point, the messages at the root node
are complete and we can obtain the quantity we need. This speeds up
the algorithm by a factor of two. Second, rather than running message
passing D2 times, we can run it only once using a vectorized second-
order semiring. This has no effect on the total number of operations,
but can result in significantly faster performance due to vector opti-
mizations in modern processors. The vectorized second-order semiring
is over four-tuples (q,φ,ψ,C) where q ∈ R, φ,ψ ∈ R

D, and C ∈ R
D×D,

and uses the following operations:

(q1,φ1,ψ1,C1) ⊕ (q2,φ2,ψ2,C2) = (q1 + q2, φ1 + φ2, ψ1 + ψ2, C1 +C2)

(6.40)

(q1,φ1,ψ1,C1) ⊗ (q2,φ2,ψ2,C2) = (q1q2, q1φ2 + q2φ1, q1ψ2 + q2ψ1,

q1C2 + q2C1 + φ1ψ
�
2 + φ2ψ

�
1 )

(6.41)

0 = (0,0,0,0) (6.42)

1 = (1,0,0,0). (6.43)

It is easy to verify that computations in this vectorized semiring are
identical to those obtained by repeated use of the scalar semiring.
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Given C, we can now normalize and compute marginals for an SDPP
using the formulas in Section 3.3; for instance

Kii =
D∑
n=1

λn
λn + 1

(B�
i v̂n)2 (6.44)

= q2(yi)
D∑
n=1

λn
λn + 1

(φ(yi)
�v̂n)2, (6.45)

where C =
∑D

n=1λnv̂nv̂
�
n is an eigendecomposition of C.

Part marginals The introduction of structure offers an alternative
type of marginal probability, this time not of structures y ∈ Y but of
single part assignments. More precisely, we can ask how many of the
structures in a sample from the SDPP can be expected to make the
assignment ŷr to part r:

µr(ŷr) = E


∑

y∈Y
I(y ∈ Y ∧ yr = ŷr)


 (6.46)

=
∑
y∼ŷr

PL(y ∈ Y ). (6.47)

The sum is exponential, but we can compute it efficiently using second-
order message passing. We apply Equation (6.44) to get

∑
y∼ŷr

PL(y ∈ Y ) =
∑
y∼ŷr

q2(y)
D∑
n=1

λn
λn + 1

(φ(y)�v̂n)2 (6.48)

=
D∑
n=1

λn
λn + 1

∑
y∼ŷr

q2(y)(φ(y)�v̂n)2 (6.49)

=
D∑
n=1

λn
λn + 1

∑
y∼ŷr

(∏
α∈F

q2α(yα)

)(∑
α∈F

φα(yα)�v̂n

)2

.

(6.50)

The result is a sum of D terms, each of which takes the form of Equa-
tion (6.37), and therefore is efficiently computable by message passing.
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The desired part marginal probability simply requiresD separate appli-
cations of belief propagation, one per eigenvector v̂n, for a total runtime
of O(D2M cR). (It is also possible to vectorize this computation and use
a single run of belief propagation.) Note that if we require the marginal
for only a single part µr(ŷr), we can run just the forward pass if we
root the factor tree at part node r. However, by running both passes
we obtain everything we need to compute the part marginals for any r
and ŷr; the asymptotic time required to compute all part marginals is
the same as the time required to compute just one.

6.3.2 Sampling

While the dual representation provides useful algorithms for normal-
ization and marginals, the dual sampling algorithm is linear in N ; for
SDPPs, this is too slow to be useful. In order to make SDPP sam-
pling practical, we need to be able to efficiently choose a structure yi
according to the distribution

Pr(yi) =
1
|V̂ |
∑
v̂∈V̂

(v̂�Bi)2 (6.51)

in the first line of the while loop in Algorithm 3. We can use the defi-
nition of B to obtain

Pr(yi) =
1
|V̂ |
∑
v̂∈V̂

q2(yi)(v̂
�φ(yi))

2 (6.52)

=
1
|V̂ |
∑
v̂∈V̂

(∏
α∈F

q2α(yiα)

)(∑
α∈F

v̂�φα(yiα)

)2

. (6.53)

Thus, the desired distribution has the familiar form of Equation (6.37).
For instance, the marginal probability of part r taking the assignment
ŷr is given by

1
|V̂ |
∑
v̂∈V̂

∑
y∼ŷr

(∏
α∈F

q2α(yα)

)(∑
α∈F

v̂�φα(yα)

)2

, (6.54)

which we can compute with k = |V̂ | runs of belief propagation (or a
single vectorized run), taking only O(DM cRk) time. More generally,
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the message-passing computation of these marginals offers an efficient
algorithm for sampling individual full structures yi. We will first show a
naive method based on iterated computation of conditional marginals,
and then use it to derive a more efficient algorithm by integrating the
sampling of parts into the message-passing process.

Single structure sampling Returning to the factor graph used for
belief propagation (see Section 6.2.1), we can force a part r′ to take
a certain assignment yr′ by adding a new singleton factor containing
only r′, and setting its weight function to 1 for yr′ and 0 otherwise.
(In practice, we do not need to actually create a new factor; we can
simply set outgoing messages from variable r′ to 0 for all but the desired
assignment yr′ .) It is easy to see that Equation (6.28) becomes⊗

α∈F (r)

mα→r(yr) =
⊕

y∼yr,yr′

⊗
α∈F

wα(yα), (6.55)

where the sum is now doubly constrained, since any assignment y

that is not consistent with yr′ introduces a 0 into the product. If⊗
α∈F wα(yα) gives rise to a probability measure over structures y,

then Equation (6.55) can be seen as the unnormalized conditional
marginal probability of the assignment yr given yr′ . For example, using
the second-order semiring with p = q2 and a = b = v̂�φ, we have
 ⊗
α∈F (r)

mα→r(yr)




4

=
∑

y∼yr,yr′

(∏
α∈F

q2α(yα)

)(∑
α∈F

v̂�φα(yα)

)2

.

(6.56)

Summing these values for all v̂ ∈ V̂ and normalizing the result yields
the conditional distribution of yr given fixed assignment yr′ under
Equation (6.53). Going forward we will assume for simplicity that V̂
contains a single vector v̂; however, the general case is easily handled by
maintaining |V̂ | messages in parallel or by vectorizing the computation.

The observation that we can compute conditional probabilities with
certain assignments held fixed gives rise to a naive algorithm for sam-
pling a structure according to Pr(yi) in Equation (6.53), shown in
Algorithm 9. While polynomial, Algorithm 9 requires running belief
propagation R times, which might be prohibitively expensive for large
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Algorithm 9 Sampling a structure (naive)
Input: factored q and φ, v̂

S ← ∅
for r = 1,2, . . . ,R do

Run second-order belief propagation with:
• p = q2

• a = b = v̂�φ
• assignments in S held fixed

Sample yr according to Pr(yr|S) ∝
[⊗

α∈F (r)mα→r(yr)
]
4

S ← S ∪ {yr}
end for
Output: y constructed from S

structures. We can do better by weaving the sampling steps into a sin-
gle run of belief propagation. We discuss first how this can be done for
linear factor graphs, where the intuition is simpler, and then extend it
to general factor trees.

Linear graphs Suppose that the factor graph is a linear chain
arranged from left to right. Each node in the graph has at most two
neighbors — one to the left and one to the right. Assume the belief
propagation forward pass proceeds from left to right, and the back-
ward pass from right to left. To send a message to the right, a node
needs only to receive its message from the left. Conversely, to send a
message to the left, only the message from the right is needed. Thus,
the forward and backward passes can be performed independently.

Consider now the execution of Algorithm 9 on this factor graph.
Assume the variable nodes are numbered in decreasing order from left
to right, so the variable sampled in the first iteration is the rightmost
variable node. Observe that on iteration r, we do not actually need to
run belief propagation to completion; we need only the messages incom-
ing to variable node r, since those suffice to compute the (conditional)
marginals for part r. To obtain those messages, we must compute all of
the forward messages sent from the left of variable r, and the backward
messages from the right. Call this set of messages m(r).



6.3 Inference 247

Note thatm(1) is just a full, unconstrained forwardpass,which canbe
computed in timeO(DM cR). Now compare m(r) to m(r − 1). Between
iteration r − 1 and r, the only change to S is that variable r − 1, to the
right of variable r, has been assigned. Therefore, the forward messages in
m(r), which come from the left, do not need to be recomputed, as they
are a subset of the forward messages in m(r − 1). Likewise, the backward
messages sent from the right of variable r − 1 are unchanged, so they do
not need to be recomputed. The only new messages in m(r) are those
backward messages traveling from r − 1 to r. These can be computed,
using m(r − 1) and the sampled assignment yr−1, in constant time. See
Figure 6.3 for an illustration of this process.

Thus, rather than restarting belief propagation on each loop of Algo-
rithm 9, we have shown that we need only compute a small number of
additional messages. In essence we have threaded the sampling of parts
r into the backward pass. After completing the forward pass, we sample
y1; we then compute the backward messages from y1 to y2, sample y2,
and so on. When the backward pass is complete, we sample the final
assignment yR and are finished. Since the initial forward pass takes
O(DM cR) time and each of the O(R) subsequent iterations takes at
most O(DM c) time, we can sample from Pr(yi) over a linear graph in
O(DM cR) time.

Trees The algorithm described above for linear graphs can be
generalized to arbitrary factor trees. For standard graphical model

Fig. 6.3 Messages on a linear chain. Only the starred messages need to be computed to
obtain m(r) from m(r − 1). The double circle indicates that assignment yr−1 has been
fixed for computing m(r).
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sampling using the sum-product semiring, the generalization is straight-
forward — we can simply pass messages up to the root and then sample
on the backward pass from the root to the leaves. However, for arbitrary
semirings this algorithm is incorrect, since an assignment to one node
can affect the messages arriving at its siblings even when the parent’s
assignment is fixed.

Let mb→a(·|S) be the message function sent from node b to node
a during a run of belief propagation where the assignments in S have
been held fixed. Imagine that we re-root the factor tree with a as the
root; then define Ta(b) to be the subtree rooted at b (see Figure 6.4).
Several useful observations follow.

Lemma 6.1. If b1 and b2 are distinct neighbors of a, then Ta(b1) and
Ta(b2) are disjoint.

Proof. The claim is immediate, since the underlying graph is a tree.

Lemma 6.2. mb→a(·|S) can be computed given only the messages
mc→b(·|S) for all neighbors c 
= a of b and either the weight function
wb (if b is a factor node) or the assignment to b in S (if b is a variable
node and such an assignment exists).

Fig. 6.4 Notation for factor trees, including mb→a(·|S) and Ta(b) when a is a (square) factor
node and b is a (round) variable node. The same definitions apply when a is a variable and
b is a factor.
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Proof. Follows from the message definitions in Equations (6.26)
and (6.27).

Lemma 6.3. mb→a(·|S) depends only on the assignments in S that
give values to variables in Ta(b).

Proof. If b is a leaf (that is, its only neighbor is a), the lemma holds
trivially. If b is not a leaf, then assume inductively that incoming mes-
sages mc→b(·|S), c 
= a, depend only on assignments to variables in
Tb(c). By Lemma 6.2, the message mb→a(·|S) depends only on those
messages and (possibly) the assignment to b in S. Since b and Tb(c) are
subgraphs of Ta(b), the claim follows.

To sample a structure, we begin by initializing S0 = ∅ and setting mes-
sages m̂b→a = mb→a(·|S0) for all neighbor pairs (a,b). This can be done
in O(DM cR) time via belief propagation.

Now we walk the graph, sampling assignments and updating the
current messages m̂b→a as we go. Step t from node b to a proceeds in
three parts as follows:

1. Check whether b is a variable node without an assignment in
St−1. If so, sample an assignment yb using the current incom-
ing messages m̂c→b, and set St = St−1 ∪ {yb}. Otherwise set
St = St−1.

2. Recompute and update m̂b→a using the current messages and
Equations (6.26) and (6.27), taking into account any assign-
ment to b in St.

3. Advance to node a.

This simple algorithm has the following useful invariant.

Theorem 6.4. Following step t from b to a, for every neighbor d of a
we have

m̂d→a = md→a(·|St). (6.57)
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Proof. By design, the theorem holds at the outset of the walk. Suppose
inductively that the claim is true for steps 1,2, . . . , t − 1. Let t′ be the
most recent step prior to t at which we visited a, or 0 if step t was
our first visit to a. Since the graph is a tree, we know that between
steps t′ and t the walk remained entirely within Ta(b). Hence the only
assignments in St − St′ are to variables in Ta(b). As a result, for all
neighbors d 
= b of a we have m̂d→a = md→a(·|St′) = md→a(·|St) by the
inductive hypothesis, Lemma 6.1, and Lemma 6.3.

It remains to show that m̂b→a = mb→a(·|Si). For all neighbors c 
= a

of b, we know that m̂c→b = mc→b(·|Si−1) = mc→b(·|St) due to the induc-
tive hypothesis and Lemma 6.3 (since b is not in Tb(c)). By Lemma 6.2,
then, we have m̂b→a = mb→a(·|St).

Theorem 6.4 guarantees that whenever we sample an assignment
for the current variable node in the first part of step t, we sample from
the conditional marginal distribution Pr(yb|St−1). Therefore, we can
sample a complete structure from the distribution Pr(y) if we walk the
entire tree. This can be done, for example, by starting at the root and
proceeding in depth-first order. Such a walk takes O(R) steps, and each
step requires computing only a single message. Thus, allowing now for
k = |V̂ | > 1, we can sample a structure in time O(DM cRk), a signifi-
cant improvement over Algorithm 9. The procedure is summarized in
Algorithm 10.

Algorithm 10 is the final piece of machinery needed to replicate
the DPP sampling algorithm using the dual representation. The full
SDPP sampling process is given in Algorithm 11 and runs in time
O(D2k3 + DM cRk2), where k is the number of eigenvectors selected
in the first loop. As in standard DPP sampling, the asymptotically
most expensive operation is the orthonormalization; here we require
O(D2) time to compute each of the O(k2) dot products.

6.4 Experiments: Pose Estimation

To demonstrate that SDPPs effectively model characteristics of real-
world data, we apply them to a multiple-person pose estimation
task [83]. Our input will be a still image depicting multiple people,
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Algorithm 10 Sampling a structure
Input: factored q and φ, v̂

S ← ∅
Initialize m̂a→b using second-order belief propagation with p = q2,
a = b = v̂�φ
Let a1,a2, . . . ,aT be a traversal of the factor tree
for t = 1,2, . . . ,T do

if at is a variable node r with no assignment in S then
Sample yr according to Pr(yr) ∝

[⊗
α∈F (r) m̂α→r(yr)

]
4

S ← S ∪ {yr}
end if
if t < T then

Update m̂at→at+1 using Equations (6.26) and (6.27), fixing
assignments in S

end if
end for
Output: y constructed from S

and our goal is to simultaneously identify the poses — the positions
of the torsos, heads, and left and right arms — of all the people in
the image. A pose y is therefore a structure with four parts, in this
case literally body parts. To form a complete structure, each part r
is assigned a position/orientation pair yr. Our quality model will be
based on “part detectors” trained to estimate the likelihood of a par-
ticular body part at a particular location and orientation; thus we will
focus on identifying poses that correspond well to the image itself. Our
similarity model, on the other hand, will focus on the location of a pose
within the image. Since the part detectors often have uncertainty about
the precise location of a part, there may be many variations of a single
pose that outscore the poses of all the other, less detectable people. An
independent model would thus be likely to choose many similar poses.
By encouraging the model to choose a spatially diverse set of poses, we
hope to improve the chance that the model predicts a single pose for
each person.
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Algorithm 11 Sampling from an SDPP
Input: eigendecomposition {(v̂n,λn)}Dn=1 of C
J ← ∅
for n = 1,2, . . . ,N do
J ← J ∪ {n} with prob. λn

λn+1
end for
V̂ ← { v̂n

v̂�
nCv̂n

}n∈J
Y ← ∅
while |V̂ | > 0 do

Select yi from Y with Pr(yi) = 1
|V̂ |
∑

v̂∈V̂ ((B�v̂)�ei)2 (Algo-

rithm 10)
Y ← Y ∪ yi
V̂ ← V̂⊥, where {B�v̂ | v̂ ∈ V̂⊥} is an orthonormal basis for the
subspace of V

orthogonal to ei
end while
Output: Y

Our dataset consists of 73 still frames taken from various TV shows,
each approximately 720 by 540 pixels in size [126].1 As much as possible,
the selected frames contain three or more people at similar scale, all
facing the camera and without serious occlusions. Sample images from
the dataset are shown in Figure 6.6. Each person in each image is
annotated by hand; each of the four parts (head, torso, right arm, and
left arm) is labeled with the pixel location of a reference point (e.g.,
the shoulder) and an orientation selected from among 24 discretized
angles.

6.4.1 Factorized Model

There are approximately 75,000 possible values for each part, so there
are about 475,000 possible poses, and thus we cannot reasonably use a
standard DPP for this problem. Instead, we build a factorized SDPP.
Our factors are given by the standard pictorial structure model [50, 52],

1 The images and code were obtained from http://www.vision.grasp.upenn.edu/video.
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treating each pose as a two-level tree with the torso as the root and the
head and arms as leaves. Each node (body part) has a singleton factor
and each edge has a corresponding pairwise factor.

Our quality function derives from the model proposed by Sapp
et al. [126], and is given by

q(y) = γ


 R∏
r=1

qr(yr)
∏

(r,r′)∈E
qr,r′(yr,yr′)



β

, (6.58)

where E is the set of edges in the part tree, γ is a scale parameter
that will control the expected number of poses in an SDPP sample,
and β is a sharpness parameter that controls the dynamic range of
the quality scores. We set the values of the hyperparameters γ and β

using a held-out training set, as discussed below. The per-part quality
scores qr(yr) are provided by the customized part detectors trained
by Sapp et al. [126] on similar images; they assign a value to every
proposed location and orientation yr of part r. The pairwise quality
scores qr,r′(yr,yr′) are defined according to a Gaussian “spring” that
encourages, for example, the left arm to begin near the left shoulder of
the torso. Full details of the model are provided in Sapp et al. [126].

In order to encourage the model not to choose overlapping poses,
our diversity features reflect the locations of the constituent parts:

φ(y) =
R∑
r=1

φr(yr), (6.59)

where each φr(yr) ∈ R
32. There are no diversity features on the edge

factors. The local features are based on a 8 × 4 grid of reference points
x1,x2, . . . ,x32 spaced evenly across the image; the l-th feature is

φrl(yr) ∝ fN
(

dist(yr,xl)
σ

)
. (6.60)

Here fN is again the standard normal density function, and dist(yr,xl)
is the Euclidean distance between the position of part r (ignoring orien-
tation) and the reference point xl. Poses that occupy the same part of
the image will be near the same reference points, and thus their feature
vectors φ will be more closely aligned. The parameter σ controls the
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width of the kernel; larger values of σ make poses at a given distance
appear more similar. We set σ on a held-out training set.

6.4.2 Methods

We compare samples from the SDPP defined above to those from two
baseline methods. The first, which we call the independent model,
draws poses independently according to the distribution obtained by
normalizing the quality scores, which is essentially the graphical model
used by Sapp et al. [126]. For this model the number of poses to be
sampled must be supplied by the user, so to create a level playing
field we choose the number of poses in an SDPP sample Y . Since this
approach does not incorporate a notion of diversity (or any correlations
between selected poses whatsoever), we expect that we will frequently
see multiple poses that correspond to the same person.

The second baseline is a simple non-maximum suppression
model [22], which incorporates a heuristic for encouraging diversity.
The first pose is drawn from the normalized quality model in the same
manner as for the independent method. Subsequent poses, however,
are constrained so that they cannot overlap with the previously selected
poses, but otherwise drawn according to the quality model. We consider
poses overlapping if they cover any of the same pixels when rendered.
Again, the number of poses must be provided as an argument, so we use
the number of poses from a sample of the SDPP. While the non-max
approach can no longer generate multiple poses in the same location, it
achieves this using a hard, heuristic constraint. Thus, we might expect
to perform poorly when multiple people actually do overlap in the
image, for example if one stands behind the other.

The SDPP, on the other hand, generates samples that prefer, but
do not require poses to be spatially diverse. That is, strong visual infor-
mation in the image can override our prior assumptions about the sep-
aration of distinct poses. We split our data randomly into a training
set of 13 images and a test set of 60 images. Using the training set, we
select values for γ, β, and σ that optimize overall F1 score at radius
100 (see below), as well as distinct optimal values of β for the baselines.
(γ and σ are irrelevant for the baselines.) We then use each model to
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sample ten sets of poses for each test image, for a total of 600 samples
per model.

6.4.3 Results

For each sample from each of the three tested methods, we compute
measures of precision and recall as well as an F1 score. In our tests,
precision is measured as the fraction of predicted parts for which both
endpoints are within a given radius of the endpoints of an expert-
labeled part of the same type (head, left arm, and so on). We report
results across a range of radii. Correspondingly, recall is the fraction of
expert-labeled parts with endpoints within a given radius of a predicted
part of the same type. Since the SDPP model encourages diversity,
we expect to see improvements in recall at the expense of precision,
compared to the independent model. F1 score is the harmonic mean of
precision and recall. We compute all metrics separately for each sample,
and then average the results across samples and images in the test set.

The results are shown in Figure 6.5(a). At tight tolerances, when the
radius of acceptance is small, the SDPP performs comparably to the
independent and non-max samples, perhaps because the quality scores
are simply unreliable at this resolution, thus diversity has little effect.
As the radius increases, however, the SDPP obtains better results,
significantly outperforming both baselines. Figure 6.5(b) shows the
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Fig. 6.5 Results for pose estimation. The horizontal axis gives the acceptance radius used
to determine whether two parts are successfully matched. 95% confidence intervals are
shown. (a) Overall F1 scores. (b) Arm F1 scores. (c) Overall precision/recall curves (recall
is identified by circles).
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curves for just the arm parts, which tend to be more difficult to locate
accurately and exhibit greater variance in orientation. Figure 6.5(c)
shows the precision/recall obtained by each model. As expected, the
SDPP model achieves its improved F1 score by increasing recall at the
cost of precision.

For illustration, we show the SDPP sampling process for some
sample images from the test set in Figure 6.6. The SDPP part marginals
are visualized as a “cloud”, where brighter colors correspond to higher
probability. From left to right, we can see how the marginals change
as poses are selected during the main loop of Algorithm 11. As we saw
for simple synthetic examples in Figure 2.5(a), the SDPP discounts
but does not entirely preclude poses that are similar to those already
selected.

6.5 Random Projections for SDPPs

It is quite remarkable that we can perform polynomial-time inference
for SDPPs given their extreme combinatorial nature. Even so, in
some cases the algorithms presented in Section 6.3 may not be fast
enough. Eigendecomposing the dual representation C, for instance,
requires O(D3) time, while normalization, marginalization, and sam-
pling, even when an eigendecomposition has been precomputed, scale
quadratically in D, both in terms of time and memory. In practice,
this limits us to relatively low-dimensional diversity features φ; for
example, in our pose estimation experiments we built φ from a fairly
coarse grid of 32 points mainly for reasons of efficiency. As we move
to textual data, this will become an even bigger problem, since there
is no natural low-dimensional analog for feature vectors based on,
say, word occurrences. In the following section we will see data where
natural vectors φ have dimension D ≈ 30,000; without dimensionality
reduction, storing even a single belief propagation message would
require over 200 terabytes of memory.

To address this problem, we will make use of the random projection
technique described in Section 3.4, reducing the dimension of the diver-
sity features without sacrificing the accuracy of the model. Because
Theorem 3.3 depends on a cardinality condition, we will focus on



6.5 Random Projections for SDPPs 257

Fig. 6.6 Structured marginals for the pose estimation task, visualized as clouds, on suc-
cessive steps of the sampling algorithm. Already selected poses are superimposed. Input
images are shown on the left.

k-SDPPs. As described in Section 5, a k-DPP is simply a DPP
conditioned on the cardinality of the modeled subset Y :

Pk(Y ) =

(∏
y∈Y q

2(y)
)

det(φ(Y )�φ(Y ))∑
|Y ′|=k

(∏
y∈Y q2(y)

)
det(φ(Y )�φ(Y ))

, (6.61)
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where φ(Y ) denotes the D × |Y | matrix formed from columns φ(y) for
y ∈ Y . When q and φ factor over parts of a structure, as in Section 6.1,
we will refer to this distribution as a k-SDPP. We note in passing
that the algorithms for normalization and sampling in Section 5 apply
equally well to k-SDPPs, since they depend mainly on the eigenvalues
of L, which we can obtain from C.

Recall that Theorem 3.3 requires projection dimension

d = O(max{k/ε,(log(1/δ) + logN)/ε2}). (6.62)

In the structured setting, N = MR, thus d must be logarithmic in the
number of labels and linear in the number of parts. Under this condi-
tion, we have, with probability at least 1 − δ,

‖Pk − P̃k‖1 ≤ e6kε − 1, (6.63)

where P̃k(Y ) is the projected k-SDPP.

6.5.1 Toy Example: Geographical Paths

In order to empirically study the effects of random projections, we test
them on a simple toy application whereD is small enough that the exact
model is tractable. The goal is to identify diverse, high-quality sets of
travel routes between U.S. cities, where diversity is with respect to
geographical location, and quality is optimized by short paths visiting
the most populous or most touristy cities. Such sets of paths could be
used, for example, by a politician to plan campaign routes, or by a
traveler organizing a series of vacations.

We model the problem as a k-SDPP over path structures having
R = 4 parts, where each part is a stop along the path and can take any
ofM = 200 city values. The quality and diversity functions are factored,
with a singleton factor for every individual stop and pairwise factors
for consecutive pairs of stops. The quality of a singleton factor is based
on the Google hit count for the assigned city, so that paths stopping
in popular cities are preferred. The quality of a pair of consecutive
stops is based on the distance between the assigned cities, so that short
paths are preferred. In order to disallow paths that travel back and
forth between the same cities, we augment the stop assignments to
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include arrival direction, and assign a quality score of zero to paths that
return in the direction from which they came. The diversity features
are only defined on the singleton factors; for a given city assignment
yr, φr(yr) is just the vector of inverse distances between yr and all of
the 200 cities. As a result, paths passing through the same or nearby
cities appear similar, and the model prefers paths that travel through
different regions of the country. We have D = 200.

Figure 6.7 shows sets of paths sampled from the k-SDPP for various
values of k. For k = 2, the model tends to choose one path along the
east coast and another along the west coast. As k increases, a variety
of configurations emerge; however, they continue to emphasize popular
cities and the different paths remain geographically diverse.

We can now investigate the effects of random projections on this
model. Figure 6.8 shows the L1 variational distance between the
original model and the projected model (estimated by sampling), as
well as the memory required to sample a set of paths for a variety of
projection dimensions d. As predicted by Theorem 3.3, only a relatively
small number of projection dimensions are needed to obtain a close
approximation to the original model. Past d ≈ 25, the rate of improve-
ment due to increased dimension falls off dramatically; meanwhile,
the required memory and running time start to become significant.
Figure 6.8 suggests that aggressive use of random projections, like

Fig. 6.7 Each column shows two samples drawn from a k-SDPP; from left to right, k =
2,3,4. Circle size corresponds to city quality.
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Fig. 6.8 The effect of random projections. In black, on the left, we estimate the L1 vari-
ational distance between the original and projected models. In blue, on the right, we plot
the memory required for sampling, which is also proportional to running time.

those we employ in the following section, is not only theoretically but
also empirically justified.

6.6 Experiments: Threading Graphs

In this section we put together many of the techniques introduced in
this monograph in order to complete a novel task that we refer to as
graph threading [57]. The goal is to extract from a large directed graph
a set of diverse, salient threads, or singly connected chains of nodes.
Depending on the construction of the graph, such threads can have
various semantics. For example, given a corpus of academic literature,
high-quality threads in the citation graph might correspond to chrono-
logical chains of important papers, each building on the work of the
last. Thus, graph threading could be used to identify a set of signif-
icant lines of research. Or, given a collection of news articles from a
certain time period, where each article is a node connected to previous,
related articles, we might want to display the most significant news
stories from that period, and for each story provide a thread that con-
tains a timeline of its major events. We experiment on data from these
two domains in the following sections. Other possibilities might include
discovering trends on social media sites, for example, where users can
post image or video responses to each other, or mining blog entries for
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Fig. 6.9 An illustration of graph threading applied to a document collection. We first build
a graph from the collection, using measures of importance and relatedness to weight nodes
(documents) and build edges (relationships). Then, from this graph, we extract a diverse,
salient set of threads to represent the collection.

important conversations through trackback links. Figure 6.9 gives an
overview of the graph threading task for document collections.

Generally speaking, graph threading offers a means of gleaning
insights from collections of interrelated objects — for instance, people,
documents, images, events, locations, and so on — that are too large
and noisy for manual examination. In contrast to tools like search,
which require the user to specify a query based on prior knowledge,
a set of threads provide an immediate, concise, high-level summary of
the collection, not just identifying a set of important objects but also
conveying the relationships between them. As the availability of such
datasets continues to grow, this kind of automated analysis will be key
in helping us to efficiently and effectively navigate and understand the
information they contain.

6.6.1 Related Work

Research from to the Topic Detection and Tracking (TDT) program
[154] has led to useful methods for tasks like link detection, topic
detection, and topic tracking that can be seen as subroutines for graph
threading on text collections. Graph threading with k-SDPPs, however,
addresses these tasks jointly, using a global probabilistic model with a
tractable inference algorithm.

Other work in the topic tracking literature has addressed related
tasks [11, 91, 105]. In particular, Blei and Lafferty [11] proposed
dynamic topic models (DTMs), which, given a division of text doc-
uments into time slices, attempt to fit a generative model where topics
evolve over time, and documents are drawn from the topics available
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at the time slice during which they were published. The evolving topics
found by a DTM can be seen as threads of a sort, but in contrast to
graph threading they are not composed of actual items in the dataset
(in this case, documents). In Section 6.6.4 we will return to this dis-
tinction when we compare k-SDPP threading with a DTM baseline.

The information retrieval community has produced other methods
for extracting temporal information from document collections. Swan
and Jensen [141] proposed a system for finding temporally clustered
named entities in news text and presenting them on a timeline. Allan
et al. [2] introduced the task of temporal summarization, which takes as
input a stream of news articles related to a particular topic, and then
seeks to extract sentences describing important events as they occur.
Yan et al. [155] evaluated methods for choosing sentences from tem-
porally clustered documents that are relevant to a query. In contrast,
graph threading seeks not to extract grouped entities or sentences, but
instead to organize a subset of the objects (documents) themselves into
threads, with topic identification as a side effect.

Some prior work has also focused more directly on threading. Shahaf
and Guestrin [128] and Chieu and Lee [27] proposed methods for select-
ing individual threads, while Shahaf et al. [129] recently proposed metro
maps as alternative structured representations of related news stories.
Metro maps are effectively sets of non-chronological threads that are
encouraged to intersect and, in doing so, generate a map of events
and topics. However, these approaches assume some prior knowledge
about content. Shahaf and Guestrin [128], for example, assume that the
thread endpoints are specified, and Chieu and Lee [27] require a set of
query words. Likewise, because they build metro maps individually,
Shahaf et al. [129] implicitly assume that the collection is filtered to a
single topic, perhaps from a user query. These inputs make it possible
to quickly pare down the document graph. In contrast, we will apply
graph threading to very large graphs, and consider all possible threads.

6.6.2 Setup

In order to be as useful as possible, the threads we extract from a data
graph need to be both high quality, reflecting the most important parts
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of the collection, and diverse, so that they cover distinct aspects of the
data. In addition, we would like to be able to directly control both
the length and the number of threads that we return, since different
contexts might necessitate different settings. Finally, to be practical
our method must be efficient in both time and memory use. k-SDPPs
with random projections allow us to simultaneously achieve all of these
goals.

Given a directed graph on M vertices with edge set E and a real-
valued weight function w(·) on nodes and edges, define the weight of a
thread y = (y1,y2, . . . ,yR), (yr,yr+1) ∈ E by

w(y) =
R∑
r=1

w(yr) +
R∑
r=2

w(yr−1,yr). (6.64)

We can use w to define a simple log-linear quality model for our k-
SDPP:

q(y) = exp(βw(y)) (6.65)

=

(
R∏
r=1

exp(w(yr))
R∏
r=2

exp(w(yr−1,yr))

)β
, (6.66)

where β is a hyperparameter controlling the dynamic range of the
quality scores. We fix the value of β on a validation set in our experi-
ments.

Likewise, let φ be a feature function from nodes in the graph to R
D,

then the diversity feature function on threads is

φ(y) =
R∑
r=1

φ(yr). (6.67)

In some cases it might also be convenient to have diversity features on
edges of the graph as well as nodes. If so, they can be accommodated
without much difficulty; however, for simplicity we proceed with the
setup above.

We assume that R, k, and the projection dimension d are provided;
the first two depend on application context, and the third, as discussed
in Section 6.5, is a trade-off between computational efficiency and faith-
fulness to the original model. To generate diverse thread samples, we
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first project the diversity features φ by a random d × D matrixG whose
entries are drawn independently and identically from N (0, 1

d). We then
apply second-order message passing to compute the dual representa-
tion C, as in Section 6.3.1. After eigendecomposing C, which is only
d × d due to the projection, we can run the first phase of the k-DPP
sampling algorithm from Section 5.2.2 to choose a set V̂ of eigenvectors,
and finally complete the SDPP sampling algorithm in Section 6.3.2 to
obtain a set of k threads Y . We now apply this model to two datasets;
one is a citation graph of computer science papers, and the other is a
large corpus of news text.

6.6.3 Academic Citation Data

The Cora dataset comprises a large collection of approximately 200,000
academic papers on computer science topics, including citation infor-
mation [102]. We construct a directed graph with papers as nodes and
citations as edges, and then remove papers with missing metadata or
zero outgoing citations, leaving us with 28,155 papers. The average
out-degree is 3.26 citations per paper, and 0.011% of the total possible
edges are present in the graph.

To obtain useful threads, we set edge weights to reflect the degree
of textual similarity between the citing and the cited paper, and node
weights to correspond with a measure of paper “importance”. Specifi-
cally, the weight of edge (a,b) is given by the cosine similarity metric,
which for two documents a and b is the dot product of their normalized
tf–idf vectors, as defined in Section 4.2.1:

cos-sim(a,b) =
∑

w∈W tfa(w)tfb(w)idf2(w)√∑
w∈W tf2a(w)idf2(w)

√∑
w∈W tf2b(w)idf2(w)

,

(6.68)

Here W is a subset of the words found in the documents. We select
W by filtering according to document frequency; that is, we remove
words that are too common, appearing in more than 10% of papers, or
too rare, appearing in only one paper. After filtering, there are 50,912
unique words.
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The node weights are given by the LexRank score of each paper [43].
The LexRank score is the stationary distribution of the thresholded,
binarized, row-normalized matrix of cosine similarities, plus a damping
term, which we fix to 0.15. LexRank is a measure of centrality, so papers
that are closely related to many other papers will receive a higher score.

Finally, we design the diversity feature function φ to encourage
topical diversity. Here we apply cosine similarity again, representing
a document by the 1,000 documents to which it is most similar. This
results in binary φ of dimension D = M = 28,155 with exactly 1,000
nonzeros; φl(yr) = 1 implies that l is one of the 1,000 most similar doc-
uments to yr. Correspondingly, the dot product between the diversity
features of two documents is proportional to the fraction of top-1,000
documents they have in common. In order to make k-SDPP inference
efficient, we project φ down to d = 50 dimensions.

Figure 6.10 illustrates the behavior of the model when we set k = 4
and R = 5. Samples from the model, like the one presented in the fig-
ure, not only offer some immediate intuition about the types of papers
contained in the collection but also, upon examining individual threads,
provide a succinct illustration of the content and development of each
area. Furthermore, the sampled threads cover distinct topics, standing
apart visually in Figure 6.10 and exhibiting diverse salient terms.

6.6.4 News Articles

Our news dataset comprises over 200,000 articles from the New York
Times, collected from 2005 to 2007 as part of the English Gigaword
corpus [60]. We split the articles into six groups, with six months’ worth
of articles in each group. Because the corpus contains a significant
amount of noise in the form of articles that are short snippets, lists of
numbers, and so on, we filter the results by discarding articles more
than two standard deviations longer than the mean article, articles less
than 400 words, and articles whose fraction of nonalphabetic words is
more than two standard deviations above the mean. On average, for
each six-month period we are left with 34,504 articles.

For each time period, we generate a graph with articles as nodes.
As for the citations dataset, we use cosine similarity with define edge
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Fig. 6.10 Sampled threads from a 4-SDPP with thread length R = 5 on the Cora dataset.
Above, we plot a subset of the Cora papers, projecting their tf–idf vectors to two dimensions
by running PCA on the centroids of the threads, and then highlight the thread selections
in color. Displayed beside each thread are the words in the thread with highest tf–idf score.
Below, we show the titles of the papers in two of the threads.

weights. The subset of words W used to compute cosine similarity
contains all words that appear in at least 20 articles and at most 15%
of the articles. Across the six time periods, this results in an average
of 36,356 unique words. We include in our graph only those edges with
cosine similarity of at least 0.1; furthermore, we require that edges
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go forward in time to enforce the chronological ordering of threads.
The resulting graphs have an average of 0.32% of the total possible
edges, and an average degree of 107. As before, we use LexRank for
node weights, and the top-1000 similar documents to define a binary
feature function φ. We add a constant feature ρ to φ, which controls the
overall degree of repulsion; large values of ρ make all documents more
similar to one another. We set ρ and the quality model hyperparameters
to maximize a cosine similarity evaluation metric (see Section 6.6.4),
using the data from the first half of 2005 as a development set. Finally,
we randomly project the diversity features from D ≈ 34,500 to d = 50
dimensions. For all of the following experiments, we use k = 10 and
R = 8. All evaluation metrics we report are averaged over 100 random
samples from the model.

Graph visualizations In order to convey the scale and content of
the graphs built from news data, we provide some high-resolution ren-
derings. Figure 6.11 shows the graph neighborhood of a single article
node from our development set. Each node represents an article and
is annotated with the corresponding headline; the size of each node
reflects its weight, as does the thickness of an edge. The horizontal
position of a node corresponds to the time at which the article was
published, from left to right; the vertical positions are optimized for
readability. In the digital version of this monograph, Figure 6.11 can
be zoomed in order to read the headlines; in hardcopy, however, it is
likely to be illegible. As an alternative, an online, zoomable version of
the figure is available at http://zoom.it/GUCR.

Visualizing the entire graph is quite challenging since it contains
tens of thousands of nodes and millions of edges; placing such a fig-
ure in the monograph would be impractical since the computational
demands of rendering it and the zooming depth required to explore
it would exceed the abilities of modern document viewers. Instead,
we provide an online, zoomable version based upon a high-resolution
(540 megapixel) rendering, available at http://zoom.it/jOKV. Even at
this level of detail, only 1% of the edges are displayed; otherwise they
become visually indistinct. As in Figure 6.11, each node represents
an article and is sized according to its weight and overlaid with its
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headline. The horizontal position corresponds to time, ranging from
January 2005 (on the left) to June 2005 (on the right). The vertical
positions are determined by similarity with a set of threads sampled
from the k-SDPP, which are rendered in color.

Baselines We will compare the k-SDPP model to two natural
baselines.

k-means baseline. A simple method for this task is to split each six-
month period of articles into R equal-sized time slices, and then apply
k-means clustering to each slice, using cosine similarity at the clustering
metric. We can then select the most central article from each cluster to
form the basis of a set of threads. The k articles chosen from time slice r
are matched one-to-one with those from slice r − 1 by computing the
pairing that maximizes the average cosine similarity of the pairs — that
is, the coherence of the threads. Repeating this process for all r yields
a set of k threads of length R, where no two threads will contain the
same article. However, because clustering is performed independently
for each time slice, it is likely that the threads will sometimes exhibit
discontinuities when the articles chosen at successive time slices do not
naturally align.

DTM baseline. A natural extension, then, is the dynamic topic
model (DTM) of Blei and Lafferty [11], which explicitly attempts to find
topics that are smooth through time. We use publicly available code2

to fit DTMs with the number of topics set to k and with the data split
into R equal time slices. We set the hyperparameters to maximize the
cosine similarity metric (see Section 6.6.4) on our development set. We
then choose, for each topic at each time step, the document with the
highest per-word probability of being generated by that topic. Docu-
ments from the same topic form a single thread.

Figure 6.12 shows some of the threads sampled randomly from the
k-SDPP for our development set, and Figure 6.13 shows the same for
threads produced by the DTM baseline. An obvious distinction is that
topic model threads always span nearly the entire time period, selecting
one article per time slice as required by the form of the model, while the

2 http://code.google.com/p/princeton-statistical-learning/
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Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

pope vatican church parkinson 

israel palestinian iraqi israeli gaza abbas baghdad 

owen nominees senate democrats judicial filibusters 

social tax security democrats rove accounts 

iraq iraqi killed baghdad arab marines deaths forces 

Fig. 6.12 A set of five news threads randomly sampled from a k-SDPP for the first half of
2005. Above, the threads are shown on a timeline with the most salient words superimposed;
below, the dates and headlines from a single thread are listed.

DPP can select threads covering only the relevant span. Furthermore,
the headlines in the figures suggest that the k-SDPP produces more
tightly focused, narrative threads due to its use of the data graph,
while the DTM threads, though topically related, tend not to describe
a single continuous news story. This distinction, which results from the
fact that topic models are not designed with threading in mind, and
so do not take advantage of the explicit relation information given by
the graph, means that k-SDPP threads often form a significantly more
coherent representation of the news collection.

Comparison to human summaries We provide a quantitative
evaluation of the threads generated by our baselines and sampled
from the k-SDPP by comparing them with a set of human-generated
news summaries. The human summaries are not threaded; they are
flat, approximately daily news summaries found in the Agence France-
Presse portion of the Gigaword corpus, distinguished by their “multi”
type tag. The summaries generally cover world news, which is only a
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Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

cancer heart breast women disease aspirin risk study 

palestinian israel baghdad palestinians sunni korea gaza israeli 

social security accounts retirement benefits tax workers 401 payroll 

mets rangers dodgers delgado martinez astacio angels mientkiewicz 

hotel kitchen casa inches post shade monica closet

Fig. 6.13 A set of five news threads generated by the dynamic topic model for the first
half of 2005. Above, the threads are shown on a timeline with the most salient words
superimposed; below, the dates and headlines from a single thread are listed.

subset of the contents of our dataset. Nonetheless, they allow us to
provide an extrinsic evaluation for this novel task without generating
gold standard timelines manually which is a difficult task, given the
size of the corpus. We compute four metrics:

• Cosine similarity. We concatenate the human summaries
over each six-month period to obtain a target tf–idf vector,
concatenate the set of threads to be evaluated to obtain a
predicted tf–idf vector, and then compute the cosine simi-
larity (in percent) between the target and predicted vectors.
All hyperparameters are chosen to optimize this metric on a
validation set.

• ROUGE-1, 2, and SU4. As described in Section 4.2.1,
ROUGE is an automatic evaluation metric for text summa-
rization based on n-gram overlap statistics [93]. We report
three standard variants.
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Table 6.1. Similarity of automatically generated timelines to human summaries. Bold
entries are significantly higher than others in the column at 99% confidence, verified
using bootstrapping.

ROUGE-1 ROUGE-2 ROUGE-SU4

System Cos-sim F Prec/Rec F Prec/Rec F Prec/Rec

k-means 29.9 16.5 17.3/15.8 0.695 0.73/0.67 3.76 3.94/3.60
DTM 27.0 14.7 15.5/14.0 0.750 0.81/0.70 3.44 3.63/3.28
k-SDPP 33.2 17.2 17.7/16.7 0.892 0.92/0.87 3.98 4.11/3.87

Table 6.1 shows the results of these comparisons, averaged over
all six half-year intervals. Under each metric, the k-SDPP produces
threads that more closely resemble human summaries.

Mechanical Turk evaluation An important distinction between
the baselines and the k-SDPP is that the former are topic-oriented,
choosing articles that relate to broad subject areas, while the k-SDPP
approach is story-oriented, chaining together articles with direct indi-
vidual relationships. An example of this distinction can be seen in
Figures 6.12 and 6.13.

To obtain a large-scale evaluation of this type of thread coherence,
we employ Mechanical Turk, on online marketplace for inexpensively
and efficiently completing tasks requiring human judgment. We asked
Turkers to read the headlines and first few sentences of each article in a
timeline and then rate the overall narrative coherence of the timeline on
a scale of 1 (“the articles are totally unrelated”) to 5 (“the articles tell
a single clear story”). Five separate Turkers rated each timeline. The
average ratings are shown in the left column of Table 6.2; the k-SDPP
timelines are rated as significantly more coherent, while k-means does
poorly since it has no way to ensure that clusters are similar between
time slices.

In addition, we asked Turkers to evaluate threads implicitly by
performing a second task. (This also had the side benefit of ensur-
ing that Turkers were engaged in the rating task and did not enter
random decisions.) We displayed timelines into which two additional
“interloper” articles selected at random had been inserted, and asked
users to remove the two articles that they thought should be removed
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Table 6.2. Rating: average coherence score
from 1 (worst) to 5 (best). Interlopers: average
number of interloper articles identified (out
of 2). Bold entries are significantly higher with
95% confidence.

System Rating Interlopers

k-means 2.73 0.71
DTM 3.19 1.10
k-SDPP 3.31 1.15

Fig. 6.14 A screenshot of the Mechanical Turk task presented to annotators.

to improve the flow of the timeline. A screenshot of the task is provided
in Figure 6.14. Intuitively, the true interlopers should be selected more
often when the original timeline is coherent. The average number of
interloper articles correctly identified is shown in the right column of
Table 6.2.

Runtime Finally, assuming that tf–idf and feature values have been
computed in advance (this process requires approximately 160 seconds),
we report in Table 6.3 the time required to produce a set of threads
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Table 6.3. Running time
for the tested methods.

System Runtime (s)

k-means 625.63
DTM 19,433.80
k-SDPP 252.38

on the development set. This measurement includes clustering for the
k-means baseline, model fitting for the DTM baseline, and random
projections, computation of the covariance matrix, and sampling for the
k-SDPP. The tests were run on a machine with eight Intel Xeon E5450
cores and 32G of memory. Thanks to the use of random projections,
the k-SDPP is not only the most faithful to human news summaries,
but also the fastest by a large margin.



7
Conclusion

We believe that DPPs offer exciting new possibilities for a wide range
of practical applications. Unlike heuristic diversification techniques,
DPPs provide coherent probabilistic semantics, and yet they do not
suffer from the computational issues that plague existing models when
negative correlations arise. Before concluding, we briefly mention two
open technical questions, as well as some possible directions for future
research.

7.1 Open Question: Concavity of Entropy

The Shannon entropy of the DPP with marginal kernel K is given by

H(K) = −
∑
Y⊆Y
P(Y ) logP(Y ). (7.1)

Conjecture 1 (Lyons [97]). H(K) is concave in K.

While numerical simulation strongly suggests that the conjecture is
true, to our knowledge no proof currently exists.

275
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7.2 Open Question: Higher-order Sums

In order to calculate, for example, the Hellinger distance between a
pair of DPPs, it would be useful to be able to compute quantities of
the form ∑

Y⊆Y
det(LY )p (7.2)

for p > 1. To our knowledge it is not currently known whether it is
possible to compute these quantities efficiently.

7.3 Research Directions

A variety of interesting machine learning questions remain for future
research.

• Would DPPs based on Hermitian or asymmetric kernels offer
worthwhile modeling advantages?

• Is there a simple characterization of the conditional indepen-
dence relations encoded by a DPP?

• Can we perform DPP inference under more complicated con-
straints on allowable sets? (For instance, if the items corre-
spond to edges in a graph, we might only consider sets that
comprise a valid matching.)

• How can we learn the similarity kernel for a DPP (in addition
to the quality model) from labeled training data?

• How can we efficiently (perhaps approximately) work with
SDPPs over loopy factor graphs?

• Can SDPPs be used to diversify n-best lists and improve
reranking performance, for instance in parsing or machine
translation?
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