
A Second-order message passing

Assume we have a factor tree with variable nodes 1, 2, . . . , T and factor nodes F , where each factor
α ∈ F is a set of variable indices. Let F (t) be the set of factors in which variable t participates.
Let yt be an assignment to variable t, let yα be an assignment to all of the variables in factor α,
and let y be an assignment to all of the variables in the graph. The notation yα ∼ yt means that yα
is consistent with yt, in the sense that it assigns the same value to variable t. Suppose each factor
has a real-valued weight function wα(yα). The belief propagation algorithm defines the following
message functions:

• From a variable t to a factor α:
mt→α(yt) =

∏
α′∈F (t)\{α}

mα′→t(yt) (1)

• From a factor α to a variable t:

mα→t(yt) =
∑
yα∼yt

wα(yα) ∏
t′∈α\{t}

mt′→α(yt′)

 (2)

In the forward pass, these messages are passed up the tree, from the leaves to the root. In the
backward pass, the messages are passed back down, from the root to the leaves. Upon completion
of the second pass, we have, for every yt:∏

α∈F (t)

mα→t(yt) =
∑
y∼yt

∏
α

wα(yα) (3)

If we think of the wα as potential functions, then Equation (3) gives the (unnormalized) marginal
probability of the assignment yt under a Markov random field.

A.1 Semirings

The belief propagation algorithm is easily generalized to arbitrary semirings. Let 〈W,⊕,⊗,0,1〉 be
a semiring with elementsW , addition operator⊕, multiplication operator⊗, additive identity 0, and
multiplicative identity 1. Then for wα(yα) ∈ W , belief propagation defines the following message
functions:

mt→α(yt) =
⊗

α′∈F (t)\α

mα′→t(yt)

mα→t(yt) =
⊕
yα∼yt

wα(yα)⊗ ⊗
t′∈α\t

mt′→α(yt′)

 (4)

After passing messages forward and backward, we have the following analog of Equation (3):⊗
α∈F (t)

mα→t(yt) =
⊕
y∼yt

⊗
α

wα(yα) (5)

Under the max-product semiring, Equation (5) gives the so-called max-marginal—the maximum
(unnormalized) probability of any total assignment consistent with yt.

A.2 Second-order semiring

Li and Eisner proposed the following second-order semiring over four-tuples (q, φ, ψ, c) ∈ R4:

0 = (0, 0, 0, 0) (6)
1 = (1, 0, 0, 0) (7)

(q1, φ1, ψ1, c1)⊕ (q2, φ2, ψ2, c2) = (q1 + q2, φ1 + φ2, ψ1 + ψ2, c1 + c2) (8)
(q1, φ1, ψ1, c1)⊗ (q2, φ2, ψ2, c2) = (q1q2, q1φ2 + q2φ1, q1ψ2 + q2ψ1,

q1c2 + q2c1 + φ1ψ2 + φ2ψ1) (9)

1

In our setting, the weight function for a factor α is given by

wα(yα) = (q2(yα), q
2(yα)φr(yα), q

2(yα)φl(yα), q
2(yα)φr(yα)φl(yα)) , (10)

where q are the quality scores and φ are the similarity features. In this case, the fourth component
of wα(yα)⊗ wα′(yα′) is

q2(yα)
[
q2(yα′)φr(yα′)φl(yα′)

]
+ q2(yα′)

[
q2(yα)φr(yα)φl(yα)

]
+
[
q2(yα)φr(yα)

] [
q2(yα′)φl(yα′)

]
+
[
q2(yα′)φr(yα′)

] [
q2(yα)φl(yα)

]
= q2(yα)q

2(yα′) [φr(yα) + φr(yα′)] [φl(yα) + φl(yα′)] . (11)

By induction, it is possible to show that the fourth component of
⊗

α wα(yα) is(∏
α

q2(yα)

)(∑
α

φr(yα)

)(∑
α

φl(yα)

)
. (12)

Thus, by Equation (5) and the definition of ⊕, belief propagation with the second-order semiring
yields messages that satisfy ⊗

α∈F (t)

mα→t(yt)

4

=
∑
y∼yt

(∏
α

q2(yα)

)(∑
α

φr(yα)

)(∑
α

φl(yα)

)
. (13)

We can simply run the algorithmD2 times for all pairs (r, l) (or just vectorize the semiring) to obtain
C. In fact, since we only need complete messages at a single variable node, we can use the root node
and avoid making the backward pass.

B Structured sampling

It is possible to fix a variable t′ to a specific assignment yt′ by creating a new singleton factor
containing only that variable, and setting its weight to 1 for yt′ and 0 otherwise. Then it is easy to
see that Equation (5) becomes⊗

α∈F (t)

mα→t(yt) =
⊕

y∼yt,yt′

⊗
α

wα(yα) , (14)

where the sum is now doubly constrained, since any assignment y that is not consistent with yt′ will
introduce a 0 term into the product. If

⊗
α wα(yα) gives rise to a probability measure over labelings

y, and ⊕ adds those probabilities, then Equation (14) yields the unnormalized conditional marginal
probability of the assignment yt given yt′ . In practice, we do not need to actually create a new factor;
we can simply set outgoing messages from variable t′ to 0 for all but the desired assignment yt′ .

For SDPP sampling, we have p(y) = q2(y)(v>φ(y))2, where for simplicity we have assumed that
V = {v} contains only a single basis vector. (In general we can simply run the algorithm |V | times,
or vectorize.) We use the second-order semiring with

wα(yα) = (q2(yα), q
2(yα)(v

>φ(yα)), q
2(yα)(v

>φ(yα)), q
2(yα)(v

>φ(yα))
2) . (15)

Then the fourth component of Equation (14) is proportional to p(yt|yt′) by the same reasoning as
Equation (13).

This observation gives rise to a naive algorithm for sampling a structure according to p(y):

• Initialize a set of assignments S = ∅
• For t = 1, . . . , T

– Run belief propagation with the assignments in S held fixed.
– Sample yt from the conditional marginal distribution p(yt|S).
– Add yt to S.

• Return the collected assignments S.

2

Ta(b)

a

...
...

b

c1 c2

M(b→ a|S)

Figure 1: Illustration of M(b→ a|S) and Ta(b) when a is a (square) factor node and b is a (round)
variable node. The same definitions apply when a is a variable and b is a factor.

B.1 Linear graphs

Unfortunately, this algorithm requires running belief propagation T times. Suppose, however, that
the factor graph is a linear chain arranged from left to right. Then each node in the graph has at most
two neighbors—one to the left, and one to the right. Assume the forward pass proceeds from left to
right, and the backward pass from right to left. To send a message to the right, a node needs only to
receive its message from the left. Conversely, to send a message to the left, only the message from
the right is needed. Thus, the forward and backward passes can be performed independently.

Assume the variable nodes are numbered in decreasing order from left to right, so the variable
sampled in the first iteration is the rightmost variable node. On iteration t, we do not actually need
to run belief propagation to completion; we need only compute the forward messages sent from the
left of variable t, and the backward messages from the right. These suffice to perform the sampling
of variable t. Call this set of messages R(t). Clearly R(1) is just a full, unconstrained forward pass,
which can be computed in time O(T).

Now compare R(t) to R(t− 1). Between iteration t− 1 and t, the only change to S is that variable
t − 1, to the right of variable t, has been assigned. Therefore the forward messages in R(t), which
come from the left, do not need to be recomputed, as they are a subset of the forward messages in
R(t− 1). Likewise, the backward messages sent from the right of variable t− 1 are unchanged, so
they do not need to be recomputed. The only new messages in R(t) are those backward messages
traveling from t − 1 to t. These can be computed, using the sampled assignment yt−1, in constant
time.

Since the initial iteration takes O(T) time and each of the subsequent T − 1 iterations takes O(1)
time, we can sample from p(y) over a linear graph in linear time.

B.2 Trees

In fact, the algorithm for linear graphs can be generalized to arbitrary factor trees. Let M(b→ a|S)
be the message function sent from node b to node a during a run of belief propagation where the
assignments in S have been held fixed. Imagine that we re-root the factor tree with a as the root;
then define Ta(b) to be the subtree rooted at b (see Figure 1).

Several useful observations follow.

Lemma 1. If b1 and b2 are distinct neighbors of a, then Ta(b1) and Ta(b2) are disjoint.

Proof. The claim is immediate, since the underlying graph is a tree.

Lemma 2. M(b → a|S) can be computed given only the messages M(c → b|S) for all neighbors
c 6= a of b, the weight function wb (if b is a factor node), and the assignment to b in S, if one exists.

3

Proof. Follows from the message definitions in Equation (4).

Lemma 3. M(b → a|S) depends only on the assignments in S that give values to variables in
Ta(b).

Proof. If b is a leaf (that is, its only neighbor is a), the lemma holds trivially. If b is not a leaf, then
assume inductively that incoming messages M(c → b|S), c 6= a, depend only on assignments to
variables in Tb(c). By Lemma 2, the message M(b → a|S) depends only on those messages and
(possibly) the assignment to b in S. Since b and Tb(c) are subgraphs of Ta(b), the claim follows.

Suppose that we set S0 = ∅ and initialize current messages M̂(b → a) = M(b → a|S0) for all
neighbor pairs (a, b). This can be done in time O(T) via belief propagation.

Now we walk the graph, sampling assignments and updating the current messages M̂(b→ a) as we
go. Step i from node b to a proceeds in three parts as follows:

1. Check whether b is a variable node without an assignment in Si−1. If so, sample an as-
signment yb using the current incoming messages M̂(c → b), and set Si = Si−1 ∪ {yb}.
Otherwise set Si = Si−1.

2. Recompute and update M̂(b→ a) using the current messages and Equation (4), taking into
account any assignment to b in Si.

3. Advance to node a.

This simple algorithm has the following useful invariant.
Theorem 1. Following step i in the walk, if our current location is a, then for every neighbor b of a
we have M̂(b→ a) =M(b→ a|Si).

Proof. By design, the theorem holds at the outset of the walk. Suppose inductively that the claim
is true for steps 1, . . . , i − 1. Let i′ be the most recent step prior to i at which we visited a, or 0 if
step i was our first visit to a. Since the graph is a tree, we know that between steps i′ and i the walk
remained entirely within Ta(b). Hence the only assignments in Si − Si′ are to variables in Ta(b).
Thus for all neighbors d 6= b of a, we have M̂(d → a) = M(d → a|Si′) = M(d → a|Si) by
inductive assumption, Lemma 1, and Lemma 3.

It remains to show that M̂(b → a) = M(b → a|Si). For all neighbors c 6= a of b, we know that
M̂(c→ b) =M(c→ b|Si−1) =M(c→ b|Si) due to the inductive hypothesis and Lemma 3 (since
b is not in Tb(c)). By Lemma 2, then, we have M̂(b→ a) =M(b→ a|Si).

Theorem 1 guarantees that whenever we sample an assignment for the current variable node in the
first part of step i, we sample from the conditional marginal distribution p(yb|Si−1). Therefore, we
can sample a complete structure from the distribution p(y) if we walk the entire tree. This can be
done, for example, by starting at the root and proceeding in depth-first order. Such a walk takes
O(T) steps, and each step requires computing only a single message. Thus the algorithm runs in
time O(T).

4

