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ABSTRACT

Socially-based recommendation systems have recently at-
tracted significant interest, and a number of studies have
shown that social information can dramatically improve a
system’s predictions of user interests. Meanwhile, there are
now many potential applications that involve aspects of both
recommendation and information retrieval, and the task of
collaborative retrieval—a combination of these two tradi-
tional problems—has recently been introduced. Successful
collaborative retrieval requires overcoming severe data spar-
sity, making additional sources of information, such as so-
cial graphs, particularly valuable. In this paper we propose
a new model for collaborative retrieval, and show that our
algorithm outperforms current state-of-the-art approaches
by incorporating information from social networks. We also
provide empirical analyses of the ways in which cultural in-
terests propagate along a social graph using a real-world
music dataset.

Categories and Subject Descriptors

H.3.3 [Information storage and retrieval]: Information
Search and Retrieval; 1.2.6 [Artificial Intelligence]: Learn-

ing

General Terms

Algorithms, Experimentation

Keywords

collaborative filtering, information retrieval, social networks

1. INTRODUCTION

Collaborative filtering (CF) and related recommendation
techniques, which aim to automatically predict the inter-
ests of users and make personal recommendations of music,
movies, products, or other items, have been both intensively
studied by researchers and successfully deployed in industry
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during the past decade [3}, 9] [18] 21]. Recently, Weston et al.
[24] proposed extending CF to a setting termed collaborative
retrieval (CR), in which recommendations are made with re-
spect to a particular query context; for instance, a user might
be looking for music in a particular genre or movies similar
to a recent favorite. In these situations, otherwise accurate
recommendations will become irrelevant. Similarly, a shop-
ping website might want to deliver a list of recommended
items to a user based on their browsing history. In this case
the recently viewed pages act as a sort of query, and we
would like recommendations that are specific both to the
query and to the user. Weston et al. [24] proposed the first
algorithm to solve CR problems, called latent collaborative
retrieval (LCR).

However, several important issues remain. While it is well-
known that CF models typically contend with data sparsity
problems since a large number of user-item pairs must be
judged for compatibility based on a relatively small dataset,
CR problems suffer even more severely from sparsity, since
the range of possible queries multiplies the number of judg-
ments to be made. Viewed as a matrix completion problem,
traditional CF requires filling out a user X item matrix,
where each entry indicates the relevance of a specific item
to a specific user; this is often done using techniques like
singular value decomposition and non-negative matrix fac-
torization (NMF) [I9]. In the same light, CR can be seen
as a tensor completion problem, where the goal is to fill out
a much larger query X user X item tensor. Recent work
has begun to extend matrix factorization techniques for CF
to tensor models of this type [0l 22] 25 [26]; however, these
methods typically do not accommodate the ranking losses
used for CR, and sparsity remains an important concern.
In this work, we propose to deal with data sparsity in CR
by incorporating an additional (but often readily available)
source of information: a social graph.

In recent years social networking sites have become ex-
tremely popular, producing significant insights into the ways
in which people connect themselves and interact. Informa-
tion derived from these networks can be used to help ad-
dress the sparsity problem faced by recommender systems,
for instance by propagating information from a user’s social
connections to fill in gaps in the recommendation matrix.
A variety of CF models augmented with social information
have recently been proposed [5 [7, [8 [10] 12} 16]; these in-
clude state-of-the-art methods like Collaborative Topic Re-
gression with social matrix factorization [I6], which is based
on LDA [2], and Probabilistic Matrix Factorization (PMF)
[I0,[I7]. There has also been interest in so-called trust-aware



recommendation methods [II, [Tl 13 (14, [15], which are simi-
lar in spirit but inherently limited compared with using real
social networks [12]. However, social information has not
yet been made to work for collaborative retrieval, which ar-
guably stands to benefit even more. In this paper we set out
to fill this gap.

We propose an approach we call social collaborative re-
trieval (SCR), which builds on the latent collaborative re-
trieval (LCR) model of Weston et al. [24] by integrating so-
cial networking data. Notice that this work is different from
researches in collaborative information seeking (CIS). CIS is
a popular field of research that studies methods and systems
for people working in collaborative group for information
seeking. In [20], CIS is defined as ”a process of collabora-
tively seeking information that is defined explicitly among
the participants, interactive, and mutually beneficial.” CIS
can be viewed as an active process and is quite different
from collaborative filtering. While our work is more related
to collaborative filtering, our SCR model connects users via
their social network in addition to their passive involvements
(e.g., listening to similar music artists).

As in LCR, our algorithm sets out to optimize the top-
ranked items retrieved for a given user and query, but we
incorporate a regularization penalty that encourages the low
dimensional embedding of each user to be similar to those
of the user’s nearest social neighbors. On a collaborative re-
trieval task using real-world artist ratings from the Last.fm
music dataset, our proposed algorithm significantly outper-
forms LCR, as well as baseline CF methods based on non-
negative matrix factorization and singular value decompo-
sition, particularly when a smaller training set leads to in-
creased data sparsity.

The rest of this paper is organized as follows. In Section
[2] we provide a brief introduction to latent collaborative re-
trieval (LCR) [24], followed by the details of our proposed
SCR algorithm. Section [3] presents an empirical analysis
of the Last.fm social networking dataset, and we present
experimental results evaluating the performance of SCR in
Section [l

2. COLLABORATIVE RETRIEVAL

The goal of collaborative retrieval is to produce a ranked
list of items that are of interest to a particular user given a
particular query. While one approach might be to simply fil-
ter a set of unconstrained CF recommendations for the spec-
ified user using the query—or, conversely, to filter a set of
generic search results for the query using the user’s profile—
these pipeline approaches fail to account for interactions be-
tween the query and the user. For instance, two users might
have very different interpretations of the query “jazz”, de-
spite having broadly similar preferences among artists. CR
attempts to obtain more informative results through a uni-
fied approach.

We thus formalize the problem by defining a single score
function f(q,u,a) to represent the relevance of a given item
a with respect to both a query ¢ and a user u. If we enu-
merate all users, queries, and items, we can think of this
score function as specifying the values of a rating tensor
R € RIIXIMIXIAL where Q is the set of all queries, U is the
set of users, and A is the set of items. However, in practice
we usually only care about the top k items retrieved (for
some small constant k) for a given user and query, and our
evaluation metrics will share this property as well. (We dis-

cuss specific error measures in Section ) Thus, learning
a score function that can correctly rank items for a given
user-query pair is more important than learning one which
can correctly approximate the full set of entries in R. The
objectives that we use to learn the parameters of the score
function will therefore involve a measure of error on such
top-k ranked lists.

We next briefly review the existing latent collaborative re-
trieval model for this problem, and then introduce our model
using social information. Finally, we discuss the optimiza-
tion needed to learn the parameters of the model.

2.1 Latent collaborative retrieval

Latent collaborative retrieval (LCR) [24] was the first al-
gorithm proposed to solve collaborative retrieval problems.
The central idea is to embed users, queries, and items in
a common n-dimensional space in which they can be com-
pared using linear operations. (n is a hyperparameter that
is typically tuned on a validation set.) Formally, LCR is
parameterized by matrices § € R™¥12l v e R™*M and
T e R™A which give the low-dimensional representations
of queries, users, and items, respectively. Additionally, for
each user u a matrix U, € R™*"™ encodes the user-specific re-
lationship between queries and items. The scoring function
f is then defined as

f(q, u, CL) = S;UuTa + VuTTa I (1)

where Sy is the column of S corresponding to query g, T, is
the column of T' corresponding to item a, and V,, is the col-
umn of V' corresponding to user u. Intuitively, the first term
in Equation measures the similarity between the query and
the item in the low-dimensional space under a linear trans-
formation that is dependent on the user. The second term is
independent of the query and can be viewed as a bias term
which models user preferences for different items. Since for
a given instance of a CR task the query and user are held
fixed, there is no need for the scoring function to include
a term like S;r Vu, which would measure the compatibility
of a user and a query. However, interactions between the
user and the query that pertain to actual item recommen-
dations can be expressed in the first term. If there are signif-
icant non-user-specific aspects of the compatibility between
queries and items (i.e., a S;FTG term), these can simply be
absorbed into the first term and need not appear separately.

The parameters of the LCR scoring function are learned
by optimizing a chosen error metric over a training set; we
discuss some such metrics and other details in Section 2.3

To aid in generalization, and to avoid the potentially pro-
hibitive enumeration of queries, Equation [I] can be general-
ized using features. In this case ®g(q), Pu(u) and Pa(a)
are vector-valued feature maps for queries, users, and items,
respectively, and S, T, and V are linear maps from feature
vectors to the embedded n-dimensional space. The feature-
based scoring function is given by

£(gu,0) = 0o (q)TSTUTDA(a) + Dy (w) VT TPa(a) -

2)
If the feature maps are simple characteristic vectors, with
a unique feature for each query, user, and item, then we
recover the simpler form of Equation [l Features of this
type can also be used for content-based recommendation
models (see [24]). For our purposes, we simply note that this
feature-based formulation can be easily extended to SCR,



but for simplicity we focus on the form in Equation [1| going
forward.

2.2 Social collaborative retrieval

In the real world, people often turn to their friends for
recommendations of musics, movies, or products. Here, we
apply this intuition to improve the performance of CR tech-
niques on tasks where social information is available. Our
approach, which we refer to as social collaborative retrieval
(SCR), learns a scoring function using a combination of be-
havioral and relational error measures.

Behavioral measures encourage the model to respect im-
plicit similarities between users, items, and queries that are
revealed by the training data. For instance, the preferences
of one user may be useful for recommending items to another
user if the two users have expressed similar preferences in
the past. This is the traditional mode of operation for col-
laborative filtering, as well as for CR.

Relational measures, on the other hand, take account of
explicitly labeled connections that (hopefully) reveal under-
lying similarities. In this work, we employ a relational mea-
sure that encourages the scoring function to be smooth with
respect to a social graph; that is, we assume that users who
are social neighbors should, on average, have more similar
preferences than those who are not. (We validate this as-
sumption empirically in Section ) The hope is that this
relational measure term provides complementary guidance
to the system when little is known about the behavior of a
user.

For simplicity, and to make the fairest comparisons later,
we use the same parameterization of the scoring function as
LCR (Equation ; we have n-dimensional representations
of queries, users, and items in matrices S, V, and T, respec-
tively, as well as user-specific transformations U, € R™*".
We additionally assume that a social graph G is available,
where G(i,7) = 1 whenever users ¢ and j are linked, and
G(i,j) = 0 otherwise. We will sometimes refer to users who
are linked as “friends”, though of course the social graph
may encode relations with varying semantics. To bias the
preferences of friends toward each other, SCR. introduces the
social error measure

errsocial(‘/a G) = Z

,3,G(4,5)=1

lo (Vi V) =101, (3)

where o(+) is the sigmoid function

1

o(@) =1

(4)
and c is a hyperparameter. This measure can be seen as a
regularization penalty that is minimized when friends have
identical, high-norm representations in V. Notice that we
do not penalize similarity among non-friends, since users
may have similar tastes even though they are not friends.
Importantly, although we encourage friends to have similar
representations V,,, we do not introduce such regularization
for U, matrices, as this would tend to force friends to always
receive the same results. Intuitively, we expect that friends
are likely to have similar taste in items, but we allow each
their own particular querying “style”.

Combining the relational measure in Equation [3| with a
behavioral measure errpehavior that depends on the scoring
function f and the training set X yields the SCR learning

objective to be minimized:
errbehavior(f, X) + wserrsocial(vy G) ) (5)

where w; is a regularization hyperparameter. In the follow-
ing subsection we will discuss choices for errpenavior, as well
as optimization techniques used to find the parameters in
practice.

Similarity-based error measures related to Equation[3|have
been proposed by others, typically based not on a social
graph but instead on measured similarities between users.
For example, the measured Pearson correlation of item rat-
ings can be used as a similarity measure Sim(i,j) between
users 7 and j, and this can be incorporated using a measure
such as [12]:

] 2

>

i=1

Zj,G(i,j)=1 Sim(i, j) x V;
25,6 (i,5)=1 O, )

Vi— (6)

However, accurately estimating similarities from data is of-
ten unreliable due to sparsity, especially in the CR setting.
Moreover, such measures make it difficult to easily recom-
mend items to newer users; without a long history of ratings,
we cannot know which established users they are similar to.
On the other hand, SCR requires an external source of infor-
mation in the form of a social graph. But social networks are
increasingly ubiquitous, and, since they are by nature cen-
tralized, can often be reliable even when extensive training
data for a specific CR task is not yet available.

SCR can be viewed as a blend of social networking, collab-
orative filtering, and information retrieval. As a side bene-
fit, in addition to providing improved recommendations for
users under particular query contexts, SCR can potentially
be used in the inverse to recommend new social links be-
tween users with similar preferences. In this way SCR can
strengthen the social network and improve its own predic-
tions in the future.

2.3 Learning

The goal of SCR learning is to (efficiently) find parameters
S, V, T, and U, that minimize the objective in Equation
In this section we describe the formal learning setup, the
specific behavioral measures used in our experiments, and
the algorithm used to optimize the model parameters.

We assume we are given a training set X containing N
training examples:

X = {(qi, wi, as,wi) }iz1,2,..,N (7)

where ¢; € Q is a query, u; € U is a user, a; € A is an item,
and w; € Rso is a measure of relevance for the item a; given
the user u; and the query ¢;. Importantly, we assume that
the weights w; always have a positive connotation; that is,
triples (g, u, a) that do not appear in the training set implic-
itly have a weight of zero, and are therefore dispreferred to
triples that do appear. For instance, in our experiments, w;
will be derived from the number of times a user listens to a
particular musical artist.

The behavioral part of the objective, which measures the
compatibility of the scoring function f (defined by the model
parameters) with the training set X, can take a variety of
forms depending on the setting. As noted earlier, we will
focus on top-k ranking losses that optimize the most impor-
tant aspects of the model, rather than, say, filling out all
entries of the tensor R.



Following Weston et al. [24] we define the vector f(gq,u),
which contains predictions for all items in the database given
query ¢ and user u. The a'™ entry of f(q,u), denoted f. (g, u),
is equal to f(q,u,a).

With this notation, we can define the Weighted Approzimate-

Rank Pairwise (WARP) Loss, introduced in [23]:

errwarp (f, X) = ZL (rankai (f(qz,ul))) . (8)

1=1

Here rank,; (f(qi, u,)) is the margin-based rank of item a;,

ranka, (f(qi,u:)) = Z 01+ fo(gi,wi) > fa,(qi,wi)] , (9)

b#a;

where I[-] is the indicator function, and L is a loss function:

k

Lk)y=> o (10)
=1

a1 >a>az>-->0, (11)

with the values of a, determining the additional penalty for
each successive reduction in rank. We choose o, = 1/r,
which gives a smooth weighting over positions while as-
signing large weights to top positions and rapidly decaying
weights to lower positions.

Intuitively, the WARP loss prefers that the item a; is al-
ways ranked highest. For each training examplei =1,..., N,
the positive item a; is compared pairwise with all other (neg-
ative) items in the database. If the score of another item is
less than a margin of one from the score of a;, this pair in-
curs a cost. The WARP loss determines this cost based on
the corresponding items’ ranking positions and the choice of
o parameters.

We use the WARP loss in our experiments for comparison
with prior work. However, in our setting it ignores the rele-
vance scores w; that are part of the training set; this can be
inefficient, since the optimization cannot focus on the most
important training examples. We thus propose a modified
behavioral measure that we refer to as the weighted WARP
loss:

N
eITweighted () = ZwiL (rankai (f(ql,ul))) , (12)
i=1

where rank and L are defined as before. In our results, we
refer to models learned under this loss as SCR-weighted,
while models trained under the standard WARP loss are
referred to simply as SCR. We will derive the optimization
procedure for the weighted WARP loss, since the standard
WARP loss is a special case.

To minimize Equation [5] we employ stochastic gradient
descent, choosing at each iteration a single training instance
¢ uniformly at random from the training set. We then seek
to optimize the objective for this single example; that is, we
minimize

w; L (rankai (f(%’: U«z)))

tws Y

v,G(ui,v)=1

1= oV Voll* . (13)

Because it is expensive to compute the exact rank of an
item a; when the total number of items is very large, the
optimization procedure includes a sampling process at each

step, as introduced in [23|. For the training sample i cho-
sen at the current iteration, negative items b are sampled
uniformly at random from A until a pairwise violation is
found—that is, until 1 + f(gi,us, b) > f(qi,ui,a:). If K
steps are required to find such a b, then the rank of a; can
be approximated as

ranka, (f(qi, ui)) ~ V“‘”K_ IJ ) (14)

where || is the floor function.
Following Weston et al. [23], the single-instance objective
becomes

w; L (VA'T_lJ) 11— flgi,wiy aq) + f(qi, us, b)|

tws Y

v,G(u;,v)=1

Rewriting Equation we have

1= oV Va)ll* . (15)

Ci(1+ (g, Uu; + Vi) (Th = Tu,))

+ ws Z

v,G(u;,v)=1

1= o (Vi Vo)I*, (16)

where C; = w; - L( LWT_lJ ). To speed up each gradient step,
we only update the variables associated with the current
violation pair; that is, we only update Sq,, Vu,, Ta;, Tb, and
Uy, (In particular, we do not update the representations
u;’s friends V, for G(u;,v) = 1.) Now we can simply take
the gradient of to perform an update.

The update for user u;’s low-dimensional embedding is

Vi, < Vu, =1 <CZ (Ty — Tai)

tw, >0 (2e0(VIV) (1= o(VEV)) Vi |
v,G(u;,v)=1

(17)
or equivalently

Vig < Vay =nCi(Ty = To,) +wi Y by Ve, (18)
v,G(u;,v)=1

where b, = 2co(V,2V,)(1—o(ViEV,))? > 0, w, = nws, and n
is a learning rate parameter. (Recall that ¢ is a hyperparam-
eter for the sigmoid function.) Thus at each gradient step,
the user’s low-dimensional embedding is updated toward the
weighted mean of his or her friends’ embeddings.

Similarly, we can derive updates for the remaining param-
eters:

Sth' — qu‘ -n <C7~(Uul (Tb - Tai,))) (19)
Tai, A Tai -n (Ci(UYTiSQi - Vuz)) (20)
Ty« Ty — 1 <C,~(U£Sqi + Vui)> (21)

U, < Uu, — 1 (ci (Sqi (Ty — Tai)T)> L (22)



Finally, we constrain the parameters using

[Sil <Cs, ie{l,...,1Q} (23)
ITille < Cr i e{1,...,[Al} (24)
[Villa < Cv, iefl,.... U} (25)

and project the parameters back on to the constraints at
each step.

3. SOCIAL DATA ANALYSIS

Before showing results that compare our proposed ap-
proach to existing state-of-the-art methods, we first experi-
mentally validate the fundamental assumption that friends,
on average, have more in common than non-friends.

3.1 Last.fm dataset

In our experiments we use a real-word music dataset ob-
tained from the Last.fm music website, hetrec2011-lastfm-2k
[4]. In this dataset each user is described by his or her lis-
ten counts for all musical artists in the database (items, in
our setting), as well as any artist tags that might have been
provided by each user.

While the data contain more than ten thousand unique
tags across all users, the vast majority of tags are used by
only one user. Typically these tags appear to be personal
"notes” rather than widely used genre distinctions. To re-
move this noisy information, we throw out tags that are less
frequent, keeping only the top 30 most common tags. These
tags were all used by at least 165 unique users, and generally
correspond to genres of music; for example, the top 5 most
popular tags are “rock”, “pop”, “alternative”, “electronic” and
“indie”. The Last.fm dataset contains listening histories for
1892 users and 17632 music artists. A social graph is also
included; on average each user has 13.44 friends.

3.2 Shared musical interests

Do friends share more preferences than non-friends? This
is a key question for our approach. If the answer is no, it
may not be useful to include social networks as a predictor
variable in recommendation systems. To estimate the simi-
larity between two users’ tastes for music, we compute the
listened artists overlap ratio, defined as

= “J 1 2
where A; is the set of artists listened to by user 4.

The overlap ratios are computed for all (‘12”) user pairs.

We then divide the range [0, 1] of possible ratios evenly into
100 intervals, and calculate the fraction of the user pairs
falling in each interval that are linked in the social graph.
Intuitively, we hope that users with greater similarity are
more likely to be friends. The result is shown in Figure
(a). The percentage of realized friend relations increases
sharply as the artist overlap ratio increases.

To reinforce this analysis, we also compute the average
similarity between each user ¢ and his or her friends, as
well as the average similarity between user ¢ and all other
non-friend users, denoting the two numbers as ﬂj}”—end and
Bhon— friena- Figure [1| (b) shows the values of 8,04 and
Blon_ friend averaged over the set of users with a given num-
ber of friends; this number varies on the horizontal axis. We
can see that, no matter how many friends a user has, on av-
erage the user has more in common with his or her friends
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Figure 1: (a) For user pairs having listened artist overlap
ratios within the same interval, the proportion of friend rela-
tions among these pairs is shown. (b) Average artist overlap
ratios among friends (red) and non-friends (blue) for users
having different numbers of friends (degree).

than with non-friends; moreover, the size of this effect in-
creases for users with more friends. Overall, these analyses
support our assumptions regarding the use of social networks
for recommendation and retrieval tasks on this dataset.

4. EXPERIMENTS

We next compare the SCR approach with other state-of-
the-art algorithms. For the Last.fm dataset described in the
previous section, a query X user X item triple corresponds to
a genre X user X artist, where genres are obtained from the
set of filtered user tags.

We preprocess the data set in two ways to obtain listening
counts for each such triple. First, if a user u has listened to
an artist a and assigned multiple genres, for example rock
and indie, then wu’s listening counts for a are evenly dis-
tributed to triples (rock,u,a) and (indie,u,a). If the user
has not assigned any genre to an artist, the genres of a are
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Figure 2: (a) Recall@30 of SCR-weighted using different
embedding dimensions. (b) Weighted Recall@30 of SCR-
weighted using different embedding dimensions.

those assigned to a by other users, and the listening count
of a is distributed to each triple according to how frequently
the genre appears. If no user has ever assigned any genre
to a, the genres of a are defined as the genres used by u for
any artist, and the listening count is again prorated to the
triples.

Second, since we are interested in ranking artists given a
particular user and query, we normalize listening counts of
triples having the same u and ¢ so that their weights sum
to 1. In the end we have 389,405 data points of the form
(¢,u,a,w), where w is the normalized listen count of artist
a by user u in genre q.

Since our main goal is to show how social information can
help compensate for data sparsity in a collaborative retrieval
task, we identify a series of subsets of the Last.fm data that
correspond to increasingly less compact social networks. We
use a standard implementation of hierarchical clustering on
the complete social adjacency matrix to select subsets of
users that exhibit significant internal social structure; the
number of users in these sets varies from 200 to 1000 (see
Table . For each user set, the corresponding set of items
contains all artists listened to by one or more of the selected
users. In this way, the number of artists grows organically
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Figure 3: (a) Recall at different values of k. (b) Weighted
recall at different values of k.

with the number of users. As in Section [3] we use the 30
most frequent genre tags as our query set.

The resulting datasets are referred to as Compact-lastfm-
N, where N denotes the number of users in the dataset.
Their statistics are shown in Table By construction,
users in the smaller datasets have higher average numbers of
within-set friends. This means that the smaller sets are more
tightly connected, which may make them more amenable
to social regularization. Conversely, the larger datasets are
sparser and may be more representative of large-scale social
networks. Note that the density of social links falls with
the number of users even if the average number of within-
set friends stays constant, thus the largest datasets are in
fact quite a bit more sparse than the smallest ones. We will
show how the relative performance of SCR changes as these
qualities are varied.

4.1 Evaluation

To evaluate the performance of each algorithm, for a given
test sample (q,u,a,w) we first compute f(q,u,i) for i =
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Figure 4: (a) Recall for training data of different reduced
sizes. (b) Weighted Recall for training data of different re-
duced sizes.

1,...,]A] and sort the artists in descending order of score.
We then measure recall@k, which is 1 if artist a appears in
the top k, and 0 otherwise, and report the mean recall@k
over the whole test dataset. As a secondary measure we
report weighted recall@k, which is w if artist a appears in
the top k, and O otherwise. Mean weighted recall@k thus
not only measures how many triples are ranked in the top
k, but the quality of these test triples.

4.2 Results

We compare SCR with state-of-the-art algorithms used
for collaborative retrieval as well as traditional collaborative
filtering. Popular matrix factorization methods such as SVD
and NMF are often used for collaborative filtering; these
methods optimize the deviation of the rating matrix from
entries supplied in the training set. However, standard SVD
and NMF techniques are not directly applicable to tensors.
Instead, we perform NMF on the |Q| different user X artist
matrices to compute the rank of a among all artists given

0.25¢

——SCR
0.24; ~©-LCR
0.23F
¥
® 0.22
S
© 0.21+
oY)
T [CREEAN
2t N
0 A=W PPN
019} o--° o--©
0.18 : : : ‘
200 400 600 800 1000
Number of users
(a)
0.045¢
——SCR
-©-LCR
0.04f
N
®
8 0.035;
o
B
£ 0.03f
=)
g 2o,
0.025f - . ‘o - -0
P-e . o - hes
//
@
0.02 L L L Il
200 400 600 800 1000

Number of users
(b)

Figure 5: (a) Recall@30 for datasets of different sizes. (b)
Weighted Recall@30 for datasets of different sizes.

q and u. We also compare to latent collaborative retrieval
(LCR).

The dimension of the embeddings for all methods is chosen
to be 30; as shown in Figure [2] this choice yields approx-
imately optimal performance for SCR-weighted; however,
the results are not qualitatively different for other choices
of embedding dimension. The hyperparameters ws, 1, and
¢, along with constraint parameters C's, Cs and Cv, are
chosen separately for each method (as applicable) using the
validation set. Since matrix factorization approaches are not
specially designed for tensors and typically show worse per-
formance than LCR [24], we only present results for NMF,
which performed the best. We use the NMF implementa-
tion from http://www.csie.ntu.edu.tw/ " cjlin/nmf/. For
each experiment, 60% of the samples are used for training
(or less; see below), 20% are used for validation, and 20%
are used for testing.

We begin with results for the smallest datasat, Compact-
lastfm-200, which is small enough to be practical for all
methods. The resulting recall@k and weighted recall@k for
different k are shown in Figure SCR (weighted or un-
weighted) outperforms the baselines on this top k ranking
problem; note that SCR-~weighted outperforms SCR under


http://www.csie.ntu.edu.tw/~cjlin/nmf/

| Dataset | users | items (artists) | queries (tags) | samples | Average # of friends |

lastfm-2k 1892 17632 11946 186479 13.44
Compact-lastfm-200 200 2392 30 29850 28.54
Compact-lastfm-300 300 3299 30 44318 29.79
Compact-lastfm-400 400 4091 30 58098 29.10
Compact-lastfm-500 500 4928 30 72125 27.81
Compact-lastfm-600 600 5765 30 85522 26.32
Compact-lastfm-700 700 6454 30 98367 24.90
Compact-lastfm-800 800 7071 30 111062 23.57
Compact-lastfm-900 900 7782 30 124005 22.23
Compact-lastfm-1000 | 1000 8431 30 137518 21.01

Table 1: Last.fm dataset statistics
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Figure 6: Runtime required for each training iteration of
LCR and two versions of SCR on the Compact-lastfm-200
dataset.

the weighted recall criterion, which makes sense since it in-
corporates relevance scores in the loss function.

Since we expect social information to be particularly use-
ful when data are sparse, we also show results of recall@k
and weighted recall@k for different amounts of training data
(100%, 80%, 60% and 40% of the total training data) in Fig-

ure[d] Notice that the performance gap between SCR-weighted

and LCR becomes larger as the number of available training
examples is reduced, suggesting that our proposed algorithm
can be especially useful for predicting the interests of new
users or infrequent users when social network information is
available.

Moving to the larger datasets, computation time increas-

ingly becomes an issue for the matrix factorization approaches,

so we focus on only two algorithms: SCR-~weighted and LCR.
Figure [5| shows recall results for all of the compact datasets.
Note that the performance gap between SCR and LCR nar-
rows slightly but remains significant even as the size of sys-
tem becomes larger and the density of social links decreases.
It may be counterintuitive that performance decreases (at
least for unweighted recall) as the size of the dataset grows;
however, since the number of artists grows with the number
of users, the prediction problem is becoming more difficult

at the same time. These results suggest that, while a dense
social network may improve the relative performnce of SCR,
it retains significant advantages even in larger, sparser set-
tings.

Finally, we show in Figure[6]the runtimes for each stochas-

tic gradient training iteration of SCR and LCR on the Compact-

lastfm-200 dataset; SCR is dramatically faster, despite using
essentially similar optimization techniques. This is because
the runtime is dominated by the sampling procedure used
to estimate the rank function. LCR promotes the observed
items to high positions quickly, thus making subsequent it-
erations quite slow. SCR, on the other hand, has additional
regularization that appears to prevent this situation. Com-
bined with the performance improvements discussed above,
this is a significant practical advantage.

5. CONCLUSIONS AND FUTURE WORK

We proposed a new model that blends social networking,
information retrieval, and collaborative filtering. Our SCR
model uses social networks to improve performance on col-
laborative retrieval problems, which we believe are rapidly
becoming important in practice. The proposed method out-
performs state-of-the-art CR and CF approaches, and shows
that users tend to share interests with friends. We believe
the combination of recommendation and retrieval using so-
cial information will become increasingly useful; going for-
ward we hope to develop a two-pass version of the SCR al-
gorithm that helps predict interest commonalities between
friends, and can be used to prune out edges on the social
graph that may work against achieving good performance.
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