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Abstract

Empirical risk minimization offers well-known learning guarantees when training
and test data come from the same domain. In the real world, though, we often
wish to adapt a classifier from asourcedomain with a large amount of training
data to differenttargetdomain with very little training data. In this work we give
uniform convergence bounds for algorithms that minimize a convex combination
of source and target empirical risk. The bounds explicitly model the inherent
trade-off between training on a large but inaccurate sourcedata set and a small but
accurate target training set. Our theory also gives resultswhen we have multiple
source domains, each of which may have a different number of instances, and we
exhibit cases in which minimizing a non-uniform combination of source risks can
achieve much lower target error than standard empirical risk minimization.

1 Introduction

Domain adaptation addresses a common situation that ariseswhen applying machine learning to di-
verse data. We have ample data drawn from asourcedomain to train a model, but little or no training
data from thetarget domain where we wish to use the model [17, 3, 10, 5, 9]. Domain adaptation
questions arise in nearly every application of machine learning. In face recognition systems, training
images are obtained under one set of lighting or occlusion conditions while the recognizer will be
used under different conditions [14]. In speech recognition, acoustic models trained by one speaker
need to be used by another [12]. In natural language processing, part-of-speech taggers, parsers,
and document classifiers are trained on carefully annotatedtraining sets, but applied to texts from
different genres or styles [7, 6].

While many domain-adaptation algorithms have been proposed, there are only a few theoretical
studies of the problem [3, 10]. Those studies focus on the case where training data is drawn from a
source domain and test data is drawn from a different target domain. We generalize this approach
to the case where we have some labeled data from the target domain in addition to a large amount
of labeled source data. Our main result is a uniform convergence bound on the true target risk
of a model trained to minimize a convex combination of empirical source and target risks. The
bound describes an intuitive tradeoff between the quantityof the source data and the accuracy of
the target data, and under relatively weak assumptions we can compute it from finite labeled and
unlabeled samples of the source and target distributions. We use the task of sentiment classification
to demonstrate that our bound makes correct predictions about model error with respect to a distance
measure between source and target domains and the number of training instances.

Finally, we extend our theory to the case in which we have multiple sources of training data, each
of which may be drawn according to a different distribution and may contain a different number
of instances. Several authors have empirically studied a special case of this in which eachinstance
is weighted separately in the loss function, and instance weights are set to approximate the target
domain distribution [10, 5, 9, 11]. We give a uniform convergence bound for algorithms that min-
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imize a convex combination of multiple empirical source risks and we show that these algorithms
can outperform standard empirical risk minimization.

2 A Rigorous Model of Domain Adaptation

We formalize domain adaptation for binary classification asfollows. A domainis a pair consisting
of a distributionD onX and a labeling functionf : X → [0, 1].1 Initially we consider two domains,
asourcedomain〈DS , fS〉 and atargetdomain〈DT , fT 〉.

A hypothesisis a functionh : X → {0, 1}. The probability according the distributionDS that a
hypothesish disagrees with a labeling functionf (which can also be a hypothesis) is defined as

ǫS(h, f) = Ex∼DS
[ |h(x)− f(x)| ] .

When we want to refer to therisk of a hypothesis, we use the shorthandǫS(h) = ǫS(h, fS). We
write the empirical risk of a hypothesis on the source domainasǫ̂S(h). We use the parallel notation
ǫT (h, f), ǫT (h), andǫ̂T (h) for the target domain.

We measure the distance between two distributionsD andD′ using a hypothesis class-specific dis-
tance measure. LetH be a hypothesis class for instance spaceX , andAH be the set of subsets
of X that are the support of some hypothesis inH. In other words, for every hypothesish ∈ H,
{x : x ∈ X , h(x) = 1} ∈ AH. We define the distance between two distributions as:

dH(D,D′) = 2 sup
A∈AH

|PrD [A]− PrD′ [A]| .

For our purposes, the distancedH has an important advantage over more common means for com-
paring distributions such asL1 distance or the KL divergence: we can computedH from finite
unlabeledsamples of the distributionsD andD′ whenH has finite VC dimension [4]. Furthermore,
we can compute a finite-sample approximation todH by finding a classifierh ∈ H that maximally
discriminates between (unlabeled) instances fromD andD′ [3].

For a hypothesis spaceH, we define the symmetric difference hypothesis spaceH∆H as

H∆H = {h(x)⊕ h′(x) : h, h′ ∈ H} ,

where⊕ is the XOR operator. Each hypothesisg ∈ H∆H labels as positive all pointsx on which a
given pair of hypotheses inH disagree. We can then defineAH∆H in the natural way as the set of
all setsA such thatA = {x : x ∈ X , h(x) 6= h′(x)} for someh, h′ ∈ H. This allows us to define as
above a distancedH∆H that satisfies the following useful inequality for any hypothesesh, h′ ∈ H,
which is straight-forward to prove:

|ǫS(h, h′)− ǫT (h, h′)| ≤
1

2
dH∆H(DS ,DT ) .

We formalize the difference between labeling functions by measuring error relative to other hypothe-
ses in our class. Theideal hypothesisminimizes combined source and target risk:

h∗ = argmin
h∈H

ǫS(h) + ǫT (h) .

We denote the combined risk of the ideal hypothesis byλ = ǫS(h∗)+ ǫT (h∗) . The ideal hypothesis
explicitly embodies our notion of adaptability. When the ideal hypothesis performs poorly, we
cannot expect to learn a good target classifier by minimizingsource error.2 On the other hand, for
the kinds of tasks mentioned in Section 1, we expectλ to be small. If this is the case, we can
reasonably approximate target risk using source risk and the distance betweenDS andDT .

We illustrate the kind of result available in this setting with the following bound on the target risk
in terms of the source risk, the difference between labelingfunctionsfS andfT , and the distance
between the distributionsDS andDT . This bound is essentially a restatement of the main theorem
of Ben-David et al. [3], with a small correction to the statement of their theorem.

1This notion of domain is not the domain of a function. To avoid confusion, we will always mean a specific
distribution and function pair when we say domain.

2Of course it is still possible that the source data contains relevant information about the target function even
when the ideal hypothesis performs poorly — suppose, for example, that fS(x) = 1 if and only if fT (x) = 0
— but a classifier trained using source data will perform poorly on data from the target domain in this case.
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Theorem 1 LetH be a hypothesis space of VC-dimensiond andUS , UT be unlabeled samples of
sizem′ each, drawn fromDS andDT , respectively. Let̂dH∆H be the empirical distance onUS ,
UT , induced by the symmetric difference hypothesis space. With probability at least1− δ (over the
choice of the samples), for everyh ∈ H,

ǫT (h) ≤ ǫS(h) +
1

2
d̂H∆H(US ,UT ) + 4

√

2d log(2m′) + log(4
δ )

m′
+ λ .

The corrected proof of this result can be found Appendix A.3 The main step in the proof is a variant
of the triangle inequality in which the sides of the trianglerepresent errors between different decision
rules [3, 8]. The bound is relative toλ. When the combined error of the ideal hypothesis is large,
there is no classifier that performs well on both the source and target domains, so we cannot hope
to find a good target hypothesis by training only on the sourcedomain. On the other hand, for small
λ (the most relevant case for domain adaptation), Theorem 1 shows that source error and unlabeled
H∆H-distance are important quantities for computing target error.

3 A Learning Bound Combining Source and Target Data

Theorem 1 shows how to relate source and target risk. We now proceed to give a learning bound for
empirical risk minimization using combined source and target training data. In order to simplify the
presentation of the trade-offs that arise in this scenario,we state the bound in terms of VC dimension.
Similar, tighter bounds could be derived using more sophisticated measures of complexity such as
PAC-Bayes [15] or Rademacher complexity [2] in an analogousway.

At train time a learner receives a sampleS = (ST , SS) of m instances, whereST consists ofβm
instances drawn independently fromDT andSS consists of(1−β)m instances drawn independently
from DS . The goal of a learner is to find a hypothesis that minimizes target riskǫT (h). Whenβ
is small, as in domain adaptation, minimizing empirical target risk may not be the best choice. We
analyze learners that instead minimize a convex combination of empirical source and target risk:

ǫ̂α(h) = αǫ̂T (h) + (1− α)ǫ̂S(h)

We denote asǫα(h) the corresponding weighted combination of true source and target risks, mea-
sured with respect toDS andDT .

We bound the target risk of a domain adaptation algorithm that minimizesǫ̂α(h). The proof of the
bound has two main components, which we state as lemmas below. First we bound the difference
between the target riskǫT (h) and weighted riskǫα(h). Then we bound the difference between the
true and empirical weighted risksǫα(h) andǫ̂α(h). The proofs of these lemmas, as well as the proof
of Theorem 2, are in Appendix B.

Lemma 1 Leth be a hypothesis in classH. Then

|ǫα(h)− ǫT (h)| ≤ (1− α)

(

1

2
dH∆H(DS ,DT ) + λ

)

.

The lemma shows that asα approaches 1, we rely increasingly on the target data, and the distance
between domains matters less and less. The proof uses a similar technique to that of Theorem 1.

Lemma 2 Let H be a hypothesis space of VC-dimensiond. If a random labeled sample of size
m is generated by drawingβm points fromDT and (1 − β)m points fromDS , and labeling them
according tofS and fT respectively, then with probability at least1 − δ (over the choice of the
samples), for everyh ∈ H

|ǫ̂α(h)− ǫα(h)| <

√

α2

β
+

(1− α)2

1− β

√

d log(2m)− log δ

2m
.

3A longer version of this paper that includes the omitted appendix can be found on the authors’ websites.
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The proof is similar to standard uniform convergence proofs[16, 1], but it uses Hoeffding’s in-
equality in a different way because the bound on the range of the random variables underlying the
inequality varies withα andβ. The lemma shows that asα moves away fromβ (where each instance
is weighted equally), our finite sample approximation toǫα(h) becomes less reliable.

Theorem 2 LetH be a hypothesis space of VC-dimensiond. LetUS andUT be unlabeled samples
of sizem′ each, drawn fromDS andDT respectively. LetS be a labeled sample of sizem generated
by drawingβm points fromDT and(1 − β)m points fromDS , labeling them according tofS and
fT , respectively. If̂h ∈ H is the empirical minimizer of̂ǫα(h) onS andh∗T = minh∈H ǫT (h) is the
target risk minimizer, then with probability at least1− δ (over the choice of the samples),

ǫT (ĥ) ≤ ǫT (h∗T ) + 2

√

α2

β
+

(1− α)2

1− β

√

d log(2m)− log δ

2m
+

2(1− α)





1

2
d̂H∆H(US ,UT ) + 4

√

2d log(2m′) + log(4
δ )

m′
+ λ



 .

Whenα = 0 (that is, we ignore target data), the bound is identical to that of Theorem 1, but with an
empirical estimate for the source error. Similarly whenα = 1 (that is, we use only target data), the
bound is the standard learning bound using only target data.At the optimalα (which minimizes the
right hand side), the bound is always at least as tight as either of these two settings. Finally note that
by choosing different values ofα, the bound allows us to effectively trade off the small amount of
target data against the large amount of less relevant sourcedata.

We remark that when it is known thatλ = 0, the dependence onm in Theorem 2 can be improved;
this corresponds to the restricted or realizable setting.

4 Experimental Results

We evaluate our theory by comparing its predictions to empirical results. While ideally Theorem 2
could be directly compared with test error, this is not practical becauseλ is unknown,dH∆H is
computationally intractable [3], and the VC dimensiond is too large to be a useful measure of
complexity. Instead, we develop a simple approximation of Theorem 2 that we can compute from
unlabeled data. For many adaptation tasks,λ is small (there exists a classifier which is simultane-
ously good for both domains), so we ignore it here. We approximatedH∆H by training a linear
classifier to discriminate between the two domains. We use a standard hinge loss (normalized by
dividing by the number of instances) and apply the quantity1 −

(

hinge loss
)

in place of the actual
dH∆H. Let ζ(US ,UT ) be our approximation todH∆H, computed from source and target unlabeled
data. For domains that can be perfectly separated with margin, ζ(US ,UT ) = 1. For domains that
are indistinguishable,ζ(US ,UT )=0. Finally we replace the VC dimension sample complexity term
with a tighter constantC. The resulting approximation to the bound of Theorem 2 is

f(α) =

√

C

m

(

α2

β
+

(1− α)2

1− β

)

+ (1− α)ζ(US ,UT ) . (1)

Our experimental results are for the task of sentiment classification. Sentiment classification systems
have recently gained popularity because of their potentialapplicability to a wide range of documents
in many genres, from congressional records to financial news. Because of the large number of
potential genres, sentiment classification is an ideal areafor domain adaptation. We use the data
provided by Blitzer et al. [6], which consists of reviews of eight types of products from Amazon.com:
apparel, books, DVDs, electronics, kitchen appliances, music, video, and a catchall category “other”.
The task is binary classification: given a review, predict whether it is positive (4 or 5 out of 5 stars)
or negative (1 or 2 stars). We chose the “apparel” domain as our target domain, and all of the plots
on the right-hand side of Figure 1 are for this domain. We obtain empirical curves for the error
as a function ofα by training a classifier using a weighted hinge loss. Supposethe target domain
has weightα and there areβm target training instances. Then we scale the loss of target training
instance byα/β and the loss of a source training instance by(1− α)/(1− β).
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(a) vary distance,mS = 2500, (c) ζ(US ,UT ) = 0.715, (e) ζ(US ,UT ) = 0.715,
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Figure 1: Comparing the bound with test error for sentiment classification. Thex-axis of each figure
showsα. They-axis shows the value of the bound or test set error. (a), (c),and (e) depict the bound,
(b), (d), and (f) the test error. Each curve in (a) and (b) represents a different distance. Curves in
(c) and (d) represent different numbers of target instances. Curves in (e) and (f) represent different
numbers of source instances.

Figure 1 shows a series of plots of equation 1 (on the top) coupled with corresponding plots of test
error (on the bottom) as a function ofα for different amounts of source and target data and different
distances between domains. In each pair of plots, a single parameter (distance, number of target
instancesmT , or number of source instancesmS) is varied while the other two are held constant.
Note thatβ = mT /(mT + mS). The plots on the top part of Figure 1 are not meant to be numerical
proxies for the true error (For the source domains “books” and “dvd”, the distance alone is well
above1

2 ). Instead, they are scaled to illustrate that the bound is similar in shape to the true error
curve and that relative relationships are preserved. By choosing a differentC in equation 1 for each
curve, one can achieve complete control over their minima. In order to avoid this, we only use a
single value ofC =1600 for all 12 curves on the top part of Figure 1.

First note that in every pair of plots, the empirical error curves have a roughly convex shape that
mimics the shape of the bounds. Furthermore the value ofα which minimizes the bound also has
a low empirical error for each corresponding curve. This suggests that choosingα to minimize the
bound of Theorem 2 and subsequently training a classifier to minimize the empirical error̂ǫα(h) can
work well in practice, provided we have a reasonable measureof complexity.4 Figures 1a and 1b
show that more distant source domains result in higher target error. Figures 1c and 1d illustrate that
for more target data, we have not only lower error in general,but also a higher minimizingα. Finally,
figures 1e and 1f depict the limitation of distant source data. With enough target data, no matter how
much source data we include, we always prefer to use only the target data. This is reflected in our
bound as a phase transition in the value of the optimalα (governing the tradeoff between source and
target data). The phase transition occurs whenmT = C/ζ(US ,UT )2 (See Figure 2).

4Although Theorem 2 does not hold uniformly for allα as stated, this is easily remedied via an application
of the union bound. The resulting bound will contain an additional logarithmicfactor in the complexity term.
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Figure 2: An example of the phase transition in the optimalα. The value ofα which minimizes
the bound is indicated by the intensity, where black meansα = 1 (corresponding to ignoring source
and learning only from target data). We fixC = 1600 andζ(US ,UT ) = 0.715, as in our sentiment
results. Thex-axis shows the number of source instances (log-scale). They-axis shows the number
of target instances. A phase transition occurs at 3,130 target instances. With more target instances
than this, it is more effective to ignore even an infinite amount of source data.

5 Learning from Multiple Sources

We now explore an extension of our theory to the case of multiple source domains. We are pre-
sented with data fromN distinct sources. Each sourceSj is associated with an unknown underlying
distributionDj over input points and an unknown labeling functionfj . From each sourceSj , we
are givenmj labeled training instances, and our goal is to use these instances to train a model to
perform well on a target domain〈DT , fT 〉, which may or may not be one of the sources. This setting
is motivated by several new domain adaptation algorithms [10, 5, 11, 9] that weigh the loss from
training instances depending on how “far” they are from the target domain. That is, each training
instance is its own source domain.

As in the previous sections, we will examine algorithms thatminimize convex combinations of
training errors over the labeled examples from each source domain. As before, we letmj = βjm

with
∑N

j=1 βj = 1. Given a vectorα = (α1, · · · , αN ) of domain weights with
∑

j αj = 1, we
define the empiricalα-weighted error of functionh as

ǫ̂α(h) =
N
∑

j=1

αj ǫ̂j(h) =
N
∑

j=1

αj

mj

∑

x∈Sj

|h(x)− fj(x)| .

The trueα-weighted errorǫα(h) is defined analogously. LetDα be a mixture of theN source
distributions with mixing weights equal to the components of α. Finally, analogous toλ in the
single-source setting, we define the error of the multi-source ideal hypothesis for a weightingα as

γα = min
h
{ǫT (h) + ǫα(h)} = min

h
{ǫT (h) +

N
∑

j=1

αjǫj(h)} .

The following theorem gives a learning bound for empirical risk minimization using the empirical
α-weighted error.

Theorem 3 Suppose we are givenmj labeled instances from sourceSj for j = 1 . . . N . For a fixed
vector of weightsα, let ĥ = argminh∈H ǫ̂α(h), and leth∗T = argminh∈H ǫT (h). Then for any
δ ∈ (0, 1), with probability at least1− δ (over the choice of samples from each source),

ǫT (ĥ) ≤ ǫT (h∗T ) + 2

√

√

√

√

N
∑

j=1

α2
j

βj

√

d log 2m− log δ

2m
+ 2

(

γα +
1

2
dH∆H(Dα,DT )

)

.
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(a) Source. More girls than boys (b) Target. Separator from (c) Weighting sources to match
uniform mixture is suboptimal target is optimal
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Figure 3: A 1-dimensional example illustrating how non-uniform mixture weighting can result in
optimal error. We observe one feature, which we use to predict gender.(a) At train time we observe
more females than males.(b) Learning by uniformly weighting the training data causes usto learn a
suboptimal decision boundary,(c) but by weighting the males more highly, we can match the target
data and learn an optimal classifier.

The full proof is in appendix C. Like the proof of Theorem 2, itis split into two parts. The first part
bounds the difference between theα-weighted error and the target error similar to lemma 1. The
second is a uniform convergence bound forǫ̂α(h) similar to lemma 2.

Theorem 3 reduces to Theorem 2 when we have only two sources, one of which is the target domain
(that is, we have some small number of target instances). It is more general, though, because by
manipulatingα we can effectively change the source domain. This has two consequences. First,
we demand that there exists a hypothesish∗ which has low error on both theα-weighted convex
combination of sources and the target domain. Second, we measure distance between the target and
a mixture of sources, rather than between the target and a single source.

One question we might ask is whether there exist settings where a non-uniform weighting can lead
to a significantly lower value of the bound than a uniform weighting. This can happen if some
non-uniform weighting of sources accurately approximatesthe target domain. As a hypothetical
example, suppose we are trying to predict gender from height(Figure 3). Each instance is drawn
from a gender-specific Gaussian. In this example, we can find the optimal classifier by weighting
the “males” and “females” components of the source to match the target.

6 Related Work

Domain adaptation is a widely-studied area, and we cannot hope to cover every aspect and ap-
plication of it here5. Instead, in this section we focus on other theoretical approaches to domain
adaptation. While we do not explicitly address the relationship in this paper, we note that domain
adaptation is closely related to the setting of covariate shift, which has been studied in statistics. In
addition to the work of Huang et al. [10], several other authors have considered learning by assigning
separate weights to the components of the loss function corresponding to separate instances. Bickel
at al. [5] and Jiang and Zhai [11] suggest promising empirical algorithms that in part inspire our
Theorem 3. We hope that our work can help to explain when thesealgorithms are effective. Dai et
al. [9] considered weighting instances using a transfer-aware variant of boosting, but the learning
bounds they give are no stronger than bounds which completely ignore the source data.

Crammer et al. [8] consider learning when the marginal distribution on instances is the same across
sources but the labeling function may change. This corresponds in our theory to cases where
dH∆H = 0 but λ is large. Like us they consider multiple sources, but their notion of weighting
is less general. They consider only including or discardinga source entirely.

Li and Bilmes [13] give PAC-Bayesian learning bounds for adaptation using “divergence priors”.
They place source-centered prior on the parameters of a model learned in the target domain. Like

5The NIPS 2006 Workshop on Learning When Test and Training Inputs have Different Distributions
(http://ida.first.fraunhofer.de/projects/different06/) contains a good set of refer-
ences on domain adaptation and related topics.
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our model, the divergence prior also emphasizes the tradeoff between source and target. In our
model, though, we measure the divergence (and consequentlythe bias) of the source domain from
unlabeled data. This allows us to choose the best tradeoff between source and target labeled data.

7 Conclusion

In this work we investigate the task of domain adaptation when we have a large amount of train-
ing data from a source domain but wish to apply a model in a target domain with a much smaller
amount of training data. Our main result is a uniform convergence learning bound for algorithms
which minimize convex combinations of source and target empirical risk. Our bound reflects the
trade-off between the size of the source data and the accuracy of the target data, and we give a
simple approximation to it that is computable from finite labeled and unlabeled samples. This ap-
proximation makes correct predictions about model test error for a sentiment classification task. Our
theory also extends in a straightforward manner to a multi-source setting, which we believe helps to
explain the success of recent empirical work in domain adaptation.

Our future work has two related directions. First, we wish totighten our bounds, both by considering
more sophisticated measures of complexity [15, 2] and by focusing our distance measure on the most
relevant features, rather than all the features. We also plan to investigate algorithms that choose a
convex combination of multiple sources to minimize the bound in Theorem 3.
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