
Noname manuscript No.
(will be inserted by the editor)

Adaptive Regularization of Weight Vectors

Koby Crammer · Alex Kulesza · Mark Dredze

Received: date / Accepted: date

Abstract We present AROW, an online learning algorithm for binary and multiclass prob-
lems that combines large margin training, confidence weighting, and the capacity to han-
dle non-separable data. AROW performs adaptive regularization of the prediction function
upon seeing each new instance, allowing it to perform especially well in the presence of
label noise. We derive mistake bounds for the binary and multiclass settings that are similar
in form to the second order perceptron bound. Our bounds do not assume separability. We
also relate our algorithm to recent confidence-weighted online learning techniques. Empir-
ical evaluations show that AROW achieves state-of-the-art performance on a wide range of
binary and multiclass tasks, as well as robustness in the face of non-separable data.

1 Introduction

Online learning algorithms are fast and simple, make few statistical assumptions, and per-
form well in a wide variety of settings. The Perceptron algorithm is perhaps the oldest online
machine learning algorithm, tracing its origins back to the 1950s. The Perceptron, which
uses a gradual additive update based on stochastic gradient ascent, has been supported by
numerous mistake bound analyses (Littlestone, 1988). Despite its age, it is still widely used
for modern problems, including complex structured learning tasks (Collins, 2002).

K. Crammer
Department of Electrical Engineering
The Technion
Haifa, 32000 Israel
E-mail: koby@ee.technion.ac.il

A. Kulesza
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, MI 48109
E-mail: kulesza@umich.edu

M. Dredze
Human Language Technology Center of Excellence
Johns Hopkins University
Baltimore, MD 21211
E-mail: mdredze@cs.jhu.edu

2

While popular, the Perceptron suffers from several well-known problems. First, while
guaranteed to converge on linearly separable data sets, convergence can be slow, often taking
many iterations over the data set. This slow convergence is a consequence of non-aggressive
updates, which take a fixed step towards a better solution but offer no guarantees about the
improvement on the current training example. In many difficult learning settings, even after
an update, the Perceptron will still classify an example incorrectly. Similarly, the Perceptron
is a strictly mistake driven learning algorithm, meaning that correctly classified training
examples with ambiguous scores (the correct label is only slightly preferred) are treated as
correct. A common solution to this problem is the Perceptron with margin, in which the size
of the learning update is controlled by a learning rate hyperparameter whose increase leads
to a more aggressive update (Freund and Schapire, 1999).

A second common problem is Perceptron’s erratic behavior in high noise settings. Since
Perceptron treats every example equally, examples with label noise still receive a full update.
In contrast, batch algorithms, such as the Support Vector Machines algorithm, can sacrifice
accuracy on noisy examples in favor of improving performance on the majority of training
examples through the use of slack variables. The result is that the Perceptron’s weights os-
cillate, sometimes dramatically, as it constantly struggles with noisy labels. A number of
strategies exist for addressing this problem, including those proposed by Krogh and Hertz
(1992); Krogh (1992); Khardon and Wachman (2007), and the voted or averaged Percep-
tron proposed by Freund and Schapire (1999). This problem can be particularly dramatic in
highly non-separable structured learning tasks, which, as a result, almost universally rely on
the averaged Perceptron.

A variety of new algorithms have been proposed to address the shortcomings of the
Perceptron. One is the Passive Aggressive (PA) algorithm (Crammer et al, 2003, 2006),
also known as MIRA, which is based on the same additive update form as Perceptron. In
PA, however, the strength of the update comes from a per example learning rate that is
based on the solution to a convex optimization problem; for each example PA enforces a
prediction margin based on the hinge loss, updating the algorithm’s parameters accordingly.
The result is that, after the update, the example is guaranteed to be classified correctly.
The algorithm’s name comes from this behavior: it aggressively updates each example to
enforce a margin and passively ignores examples which are already correctly predicted with
a margin. The result is significantly faster convergence. As a result, PA has been widely
used in vision (Frome et al, 2007; Jie et al, 2010; Chechik et al, 2010), natural language
processing (McDonald et al, 2005; Chiang et al, 2008), and bioinformatics (Bernal et al,
2007). Unfortunately, the aggressive nature of the updates has a significant negative impact
on learning in the noisy setting, where incorrectly labeled examples will force large updates
to the parameters to achieve the margin requirement. The standard solution relies on slack
variables, which effectively clip the update to prevent dramatic parameter change based on
a single example.

Recently, research on online learning has returned to this issue of convergence, seek-
ing even more aggressive learning algorithms. One effective source for this aggressiveness
has been parameter confidence, which has been shown to effectively guide online learning.
Parameter confidence is encoded using an additional set of variables that measure the algo-
rithm’s confidence in its current parameter estimates. These algorithms make larger updates
to less confident parameters, and then increase the confidence of a parameter each time it is
updated. It is also possible to model second order feature interactions (Cesa-Bianchi et al,
2005; Ma et al, 2010). Tracking parameter confidence in this manner generally increases the
rate of training convergence.

3

One implementation of this idea is Confidence Weighted (CW) learning, which is based
on the passive-aggressive update. CW maintains parameter confidence through a Gaussian
distribution over linear classifier hypotheses, which is then used to control the direction and
scale of parameter updates (Dredze et al, 2008; Crammer et al, 2012). Updates not only
fix learning mistakes but also increase confidence. In many settings, CW has been shown
to be significantly more aggressive than PA, leading to much faster convergence rates. In
addition to formal guarantees in the mistake bound model (Littlestone, 1988), CW learning
has achieved state-of-the-art performance, as well as faster learning rates, on a variety of
tasks.

However, the strict update criterion used by CW learning is very aggressive and can
over-fit (Crammer et al, 2008). As a result, the most popular versions of CW rely on approx-
imate solutions that effectively regularize the update and improve results. However, current
analyses of CW learning still assume that the data are separable. It is not immediately clear
how to relax this assumption for noisy data.

In this paper, we introduce an algorithm that addresses the need for both faster con-
vergence and resistance to training noise. The core idea is to maintain the formalization of
parameter confidence and second order feature interactions introduced by CW, but forego
the aggressiveness of both CW and PA. Parameter confidence provides its own form of ag-
gressiveness, so softening the margin requirement allows for robustness to training noise
without sacrificing convergence speed. The resulting algorithm adaptively regularizes the
prediction function upon seeing each new instance, making it robust to sudden changes in
the classification function due to label noise. We call our algorithm AROW: Adaptive Regu-
larization Of Weights. We emphasize that this approach is quite different from simply intro-
ducing slack variables, which merely modulate the strength of the update. Instead, we derive
a completely new update rule that results in non-matching updates to the model parameters
and confidence parameters. If we think of CW as enforcing statements of probability, then
AROW can be seen as controlling model expectations. The result is an online learning algo-
rithm that combines the attractive properties of large margin training, confidence weighting,
and the capacity to handle non-separable data.

After deriving AROW, we provide a mistake bound analysis, similar in form to the
second order Perceptron bound, that does not assume data separability. Our previous work
(Crammer et al, 2009b) focused on the binary case of AROW. In this work, we derive an
additional binary version, detail a fuller analysis, extend the algorithm to the multi-class
setting, and provide new empirical results. We demonstrate that, for clean data, AROW
achieves similar performance to CW, already state of the art for many tasks, and that AROW
maintains convergence rates and significantly improves performance in the presence of label
noise. We believe this second property will be of critical importance in many real world
applications.

The paper proceeds as follows. In Section 2 we give a brief introduction to confidence
weighted online methods. In Section 3 we introduce AROW and derive updates for binary
and multi-class settings, and in Section 4 we provide a theoretical analysis of its behavior.
Section 5 contains empirical evaluations of AROW using a variety of binary and multi-class
applications. We conclude with a discussion of related work in Section 6 and summarize our
contributions in Section 7.

4

2 Confidence Weighted Online Learning of Linear Classifiers

Online algorithms operate in rounds. On round t the algorithm receives an instance xt ∈ Rd

and applies its current prediction rule to make a prediction ŷt ∈ Y . The true label yt ∈ Y
is then revealed, and the classifier suffers a label loss `(yt , ŷt). In binary classification, for
example, we have Y = {−1,+1} and use the zero-one loss

`01(yt , ŷt) =

{
0 ŷt = yt
1 ŷt 6= yt

. (1)

To complete the round, the algorithm adjusts its prediction rule using the labeled pair (xt ,yt).
In this work we will assume the prediction rule hw(xt) is parameterized by a weight vector
w, which is updated on each round. In binary classification a common prediction rule is
hw(xt) = sign(xt ·w). Once the update is complete, learning proceeds to the next round.

Recently Dredze, Crammer, and Pereira (Dredze et al, 2008; Crammer et al, 2008) pro-
posed confidence weighted (CW) learning, an algorithmic framework for online learning of
classification problems. CW learning incorporates a notion of confidence in the current clas-
sifier by maintaining a Gaussian distribution over the weights; its mean is given by µ ∈ Rd ,
and its covariance matrix is given by Σ ∈Rd×d . Intuitively, µp encodes the learner’s knowl-
edge of the weight for feature p, and Σp,p encodes its confidence in that weight. Small Σp,p
indicates that the learner is certain that the true weight is near µp. The off-diagonal covari-
ance terms Σp,q (p 6= q) capture interactions between weights, though they are often unused
in practice for reasons of efficiency (Ma et al, 2010).

In theory, a CW classifier labels an instance x by first drawing a parameter vector w ∼
N (µ,Σ) and then applying the prediction rule hw. In practice, however, it can be easier to
simply use the average weight vector E [w] = µ to make predictions. This is similar to the
approach taken by Bayes point machines (Herbrich et al, 2001), where a single weight vector
is used to approximate a distribution. Furthermore, for binary classification, the prediction
given by the mean weight vector turns out to be Bayes optimal.

CW classifiers are trained according to a passive-aggressive rule (Crammer et al, 2006)
that adjusts the distribution at each round to ensure that the probability of a correct prediction
is at least η ∈ (0.5,1]. This yields the update constraint

Pr [yt = hw(xt)]≥ η . (2)

Subject to this constraint, the algorithm makes the smallest possible change to the hypothesis
weight distribution, as measured using the KL divergence. For binary classification, this
implies the following optimization problem for each round t:

(µ t ,Σt) = min
µ,Σ

DKL
(
N (µ,Σ) ‖N

(
µ t−1,Σt−1

))
s.t. Prw∼N (µ,Σ) [yt (w · xt)≥ 0]≥ η

Confidence-weighted algorithms have been shown to perform well in practice (Crammer
et al, 2008; Dredze et al, 2008), but they suffer from several problems. First, the update is
quite aggressive, forcing the probability of predicting each example correctly to be at least
η > 1/2 regardless of the cost to the objective. This may cause severe over-fitting when
labels are noisy; indeed, current analyses of the CW algorithm assume that the data are
linearly separable (Crammer et al, 2008). Second, CW methods are appropriate only for
zero-one loss classification problems due to the form of the constraint in Equation (2). It
is not clear how to usefully generalize the CW approach to alternative loss functions or

5

settings such as regression. In this work we address both shortcomings, developing a CW-
like algorithm that copes effectively with label noise and generalizes the advantages of CW
learning in an extensible way. We also present an analysis for the general non-separable
case.

3 Adaptive Regularization Of Weights

In developing our algorithms, we identify two important properties of the CW update rule
that contribute to its strong performance but also make it sensitive to label noise. First, the
mean parameters µ are guaranteed to correctly classify the current training example with
margin following each update. This is because the probability constraint Pr [yt (w · xt)≥ 0]≥
η can be written explicitly as

yt (µ · xt)≥ φ

√
x>t Σxt ,

where φ > 0 is a positive constant related to η . This aggressiveness yields rapid learning,
but when an example is incorrectly labeled it can also force the learner to make a drastic and
arbitrary change to its parameters. Second, confidence, as measured by the inverse eigenval-
ues of Σ , increases monotonically with each update, and the magnitude of the confidence
update actually increases with the size of the update to the mean paramters. While it is
intuitive that our confidence should grow as we see more data, this means that incorrectly
labeled examples can cause wild parameter swings and artificially high confidence.

In order to maintain the positives but reduce the negatives of these two properties, we
isolate and soften them. As in CW learning, we maintain a Gaussian distribution over weight
vectors with mean µ and covariance Σ ; however, we recast the above characteristics of the
CW constraint as regularizers, minimizing the following unconstrained objective on each
round:

C (µ,Σ) = DKL
(
N (µ,Σ) ‖N

(
µ t−1,Σt−1

))
+λ1 ˆ̀(µ,xt ,yt)+λ2x>t Σxt , (3)

where λ1,λ2 ≥ 0 are two tradeoff hyperparameters. For simplicity and compactness of no-
tation, we will assume that λ1 = λ2 = 1/(2r) for some r > 0. The function ˆ̀(µ,xt ,yt) is
the classifier loss suffered when using the weight vector µ to predict the output for input xt
given that the true output is yt . We will generally let ˆ̀ be a squared hinge upper bound on
the label loss `

(
hµ(xt),yt

)
, as described in Section 3.1 and Section 3.3. However, other loss

functions, as long as they are convex and differentiable in µ (at all but a finte set of points),
can be used to obtain algorithms for different settings. It can be shown, for example, that the
well known recursive least squares (RLS) regression algorithm (Haykin, 1996) is a special
case of AROW with the squared loss (see also the paper of Vaits and Crammer (2011)). In
this sense AROW is significantly more general than CW.

The objective in Equation (3) balances three desires. First, the parameters should not
change radically on each round, since the current parameters contain information about
previous examples (first term). Second, the new mean parameters should predict the current
example with low loss (second term). Finally, as we see more examples, our confidence in
the parameters should grow (third term). Note that this objective is not simply the dualization
of the CW constraint, but a new formulation inspired by the previous discussion.

6

To solve for the parameters µ,Σ that minimize Equation (3), we begin by writing the
KL term explicitly:

C (µ,Σ) =
1
2

log
(

detΣt−1

detΣ

)
+

1
2

Tr
(
Σ
−1
t−1Σ

)
+

1
2
(
µ t−1−µ

)>
Σ
−1
t−1
(
µ t−1−µ

)
− d

2

+
1
2r

ˆ̀(µ,xt ,yt)+
1
2r

x>t Σxt (4)

Leaving aside the constant term −d/2, we can decompose Equation (4) into two parts—
C1(µ), depending only on µ , and C2(Σ), depending only on Σ :

C1(µ) =
1
2
(
µ t−1−µ

)>
Σ
−1
t−1
(
µ t−1−µ

)
+

1
2r

ˆ̀(µ,xt ,yt) (5)

C2(Σ) =
1
2

log
(

detΣt−1

detΣ

)
+

1
2

Tr
(
Σ
−1
t−1Σ

)
+

1
2r

x>t Σxt (6)

The updates to µ and Σ can therefore be performed independently. The update for µ is
conservative (or passive) since it makes no change unless the classifier loss is non-zero,
and we follow CW learning by enforcing a correspondingly conservative update for the
confidence parameter Σ , updating it only when µ changes. This results in fewer updates and
is easier to analyze. Our update thus proceeds in two stages.

1. Update the mean parameters: µ t = argmin
µ

C1 (µ) (7)

2. If µ t 6= µ t−1, update the confidence parameters: Σt = argmin
Σ

C2 (Σ) (8)

otherwise, set: Σt = Σt−1

Note that many online algorithms perform a gradient step on an objective similar to C1.
Here, in contrast, we optimize C1 (and C2) exactly; this leads to strong performance, as we
shall see. Furthermore, we show next how these exact updates can be computed efficiently
in the binary and multi-class classification settings.

3.1 Binary classification with the squared hinge loss

In the binary case, where Y = {−1,+1}, we apply the squared hinge loss, as in previous
work (Crammer et al, 2009b). The squared hinge loss is given by

ˆ̀
h2 (µ,x,y) =

(
max

{
0,1− y(µ · x)

})2
, (9)

which forms a convex, differentiable upper bound on the zero-one loss. We now develop
the updates in Equation (7) and Equation (8) explicitly, starting with the former. We first
observe that if ˆ̀

h2
(
µ t−1,xt ,yt

)
= 0 then no update is required and µ t = µ t−1.

We thus assume 1−yt (µ t · xt)≥ 0. Taking the derivative of C1 (µ) and setting it to zero,
we get

µ t = µ t−1−
1
2r

[
d

dµ
ˆ̀
h2 (µ,xt ,yt)

]
µ=µt

Σt−1xt , (10)

7

assuming Σt−1 is non-singular. Substituting the derivative of the squared hinge loss in Equa-
tion (10) gives

µ t = µ t−1 +
yt

r
(1− yt (µ t · xt))Σt−1xt . (11)

We solve for µ t by taking the dot product of each side of the equality with xt , yielding

yt (µ t · xt) = yt
(
µ t−1 · xt

)
+

y2
t

r
(1− yt (µ t · xt))x>t Σt−1xt .

Solving for yt (µ t · xt) we get

yt (µ t · xt) =
ryt
(
µ t−1 · xt

)
+ x>t Σt−1xt

r+ x>t Σt−1xt
.

Thus,
1− yt (µ t · xt)

r
=

r− ryt
(
µ t−1 · xt

)
r
(
r+ x>t Σt−1xt

) =
1− yt

(
µ t−1 · xt

)
r+ x>t Σt−1xt

.

Substituting back in Equation (11) we obtain the rule

µ t = µ t−1 +
max

{
0,1− yt(µ t−1 · xt)

}
x>t Σt−1xt + r

Σt−1ytxt (12)

= µ t−1 +
ˆ̀h
(
µ t−1,xt ,yt

)
x>t Σt−1xt + r

Σt−1ytxt ,

where ˆ̀h is the standard hinge loss. Note that the above update rule includes also the case
when no update is performed (i.e., 1 ≤ yt(µ t−1 · xt)). It can be easily verified that Equa-
tion (12) satisfies our assumption that 1− yt (µ t · xt)≥ 0, since

1− yt(µ t · xt) = 1− yt(µ t−1 · xt)−
1− yt(µ t−1 · xt)

r+ x>t Σt−1xt
(x>t Σt−1xt)

=
(
1− yt(µ t−1 · xt)

)(
1− x>t Σt−1xt

r+ x>t Σt−1xt

)
≥ 0 .

The update for the confidence parameters is made only if µ t 6= µ t−1, that is, if 1 >
ytx>t µ t−1. In this case, we compute the update of the confidence parameters by setting the
derivative of C2 (Σ) to zero:

−1
2

Σ
−1 +

1
2

Σ
−1
t−1 +

1
2r

[
d
dz

z|z=x>t Σxt

]
xtx>t = 0 . (13)

From this we obtain the following update for the confidence parameters:

Σ
−1
t = Σ

−1
t−1 +

xtx>t
r

. (14)

Using the Woodbury identity we can also rewrite the update for Σ in non-inverted form:

Σt = Σt−1−
Σt−1xtx>t Σt−1

r+ x>t Σt−1xt
. (15)

Pseudocode for binary AROW appears in Figure 1. Later we will make use of the fol-
lowing claim:

Claim The eigenvalues of the confidence parameters obtained during the run of any algo-
rithm derived via Equation (14) and Equation (15) are monotonically decreasing:

Σt � Σt−1 ; Σ
−1
t � Σ

−1
t−1

8

Input parameters r
Initialize µ0 = 0 , Σ0 = I,
For t = 1, . . . ,T

– Receive a training example xt ∈ Rd

– Compute margin and confidence mt = µ t−1 · xt vt = x>t Σt−1xt
– Receive true label yt , and suffer label loss `t = 1 if sign(mt) 6= yt
– If mt yt < 1, update using Equation (12) & Equation (15):

µ t = µ t−1 +αt Σt−1yt xt Σt = Σt−1−βt Σt−1xt x>t Σt−1 βt =
1

x>t Σt−1xt + r

αt = max
(

0,1− yt x>t µ t−1

)
βt (squared hinge) (16)

αt = min
{

1
2r

,max
{

0,
1− yit(xt ·µ t−1)

x>t Σt−1xt

}}
(hinge) (17)

Output: Weight vector µT and confidence ΣT .

Fig. 1 The AROW algorithm for online binary classification.

Proof: The claim follows directly from Equation (14) (or Equation (15)) where it is stated
that Σ

−1
t is a sum of Σ

−1
t−1 and a (rank-1) positive semi-definite matrix. ut

3.2 Binary classification with the hinge loss

We can also consider a version of AROW using the standard hinge loss in place of the
squared hinge; the hinge loss is simply

ˆ̀h (µ,x,y) = max
{

0,1− y(µ · x)
}
. (18)

We can derive the update rules via a reduction to PA-I (Crammer et al, 2006). We first write
Equation (5) for the hinge loss:

min
µ

1
2
(
µ t−1−µ

)>
Σ
−1
t−1
(
µ t−1−µ

)
+

1
2r

max
{

0,1− y(µ · x)
}
. (19)

Next, we change variables (this will give us a Euclidean distance term):

µ = Σ
1/2
t−1v , µ t−1 = Σ

1/2
t−1vt−1 , x = Σ

−1/2
t−1 z . (20)

Substituing in Equation (19), we get

min
µ

1
2
(vt−1− v)> (vt−1− v)+

1
2r

max
{

0,1− y(v · z)
}
. (21)

This is exactly the optimization problem of PA-I (Crammer et al, 2006, Sec. 3), for which
the solution is given by

v = vt−1 +αtyz , where αt = min
{

1
2r

,max
{

0,
1− y(z · vt−1)

z>z

}}
.

Substituing back the original variables from Equation (20),

Σ
− 1

2
t−1 µ = Σ

− 1
2

t−1 µ t−1 +αtyΣ
1
2

t−1x ⇒ µ = µ t−1 +αtyΣt−1x , (22)

9

Input parameters r
Initialize µ0 = 0 , Σ0 = I,
For t = 1, . . . ,T

– Receive a training example xt
– Make a prediction ŷt = argmaxy

[
µ t−1 · f (xt ,y)

]
– Receive true label yt , and suffer label loss `t = 1 if ŷt 6= yt
– Update µ t using Equation (28)

µ t = argmin
µ,γ

(
µ t−1−µ

)>
Σ
−1
t−1
(
µ t−1−µ

)
+

1
r

γ
2

s.t. γ ≥ 1+µ · f (x, ŷ)−µ · f (x,y) ∀ŷ 6= y

γ ≥ 0

– If an update was performed (µ t 6= µ t−1), update:

Σt = Σt−1−
Σt−1 ft f>t Σt−1

r+ f>t Σt−1 ft
ft = ∑

y
f (xt ,y) (24)

Output: Weight vector µT and confidence ΣT .

Fig. 2 The full version of AROW algorithm for online multi-class classification.

where

αt = min
{

1
2r

,max
{

0,
1− y(x ·µ t−1)

x>Σt−1x

}}
. (23)

Pseudocode for binary AROW with the hinge loss also appears in Figure 1. Comparing
this update to the squared hinge update, we observe that the update to the mean parameters
µ takes a common additive form of µ t−1 plus a scalar times Σt−1x. The difference is the
exact value of the scalar (compare Equation (16) with Equation (23)).

Finally, we note from Equation (5) and Equation (6) that the update for the covariance Σt
is performed using the same rule as for the squared hinge case, and is given in Equation (15).

3.3 Multi-class classification

When there are more than two classes, we assume that a feature function f maps the in-
put x and a proposed class y to the weight space Rd (see Collins (2002)). Then the prediction
rule is given by

hµ(x) = argmax
y

[µ · f (x,y)] , (25)

and the squared hinge loss by

ˆ̀(µ,x,y) =
(

max
{

0,1+max
ŷ 6=y
{µ · f (x, ŷ)}−µ · f (x,y)

})2

. (26)

We now present two updates for the multi-class setting. The first is based on directly
minimizing the hinge-loss defined above (see, for example, (Crammer and Singer, 2003));
the second update, motivated by the high time complexity of the first update, is based on a
top-1 reduction (e.g., see Collins (2002)). We start with an update that minimizes the multi-
class hinge loss.

10

Input parameters r
Initialize µ0 = 0 , Σ0 = I,
For t = 1, . . . ,T

– Receive a training example xt
– Make a prediction ŷt = argmaxy

[
µ t−1 · f (xt ,y)

]
– Receive true label yt , and suffer label loss `t = 1 if ŷt 6= yt
– Compute the competitor label ỹt = argmaxy6=yt µ>t−1 f (xt ,y)
– Define ∆ ft = f (xt ,yt)− f (xt , ỹt) using Equation (32)
– Compute margin and confidence mt = µ t−1 · (∆ ft) vt = (∆ ft)

>
Σt−1 (∆ ft)

– If mt < 1, update using a generalization of Equation (12) & Equation (15):

µ t = µ t−1 +αt Σt−1 (∆ ft) Σt = Σt−1−βt Σt−1 (∆ ft)(∆ ft)
>

Σt−1

βt =
1

(∆ ft)
>

Σt−1 (∆ ft)+ r
αt = max

(
0,1− (∆ ft)

>
µ t−1

)
βt

Output: Weight vector µT and confidence ΣT .

Fig. 3 The top-1 version of AROW algorithm for online multi-class classification.

To compute the update for µ (Equation (7)), we first rewrite the loss using constrained
optimization:

ˆ̀(µ,x,y) = min
γ

γ
2

s.t. γ ≥ 1+µ · f (x, ŷ)−µ · f (x,y) ∀ŷ 6= y

γ ≥ 0 (27)

We can now find µ t as follows:

µ t = argmin
µ,γ

(
µ t−1−µ

)>
Σ
−1
t−1
(
µ t−1−µ

)
+

1
r

γ
2

s.t. γ ≥ 1+µ · f (x, ŷ)−µ · f (x,y) ∀ŷ 6= y

γ ≥ 0 (28)

This is a quadratic programming problem with linear constraints, and can be solved effi-
ciently with standard approaches such as Hildreth’s algorithm (Censor and Zenios, 1997).
Although such algorithms run in polynomial rime, in practice it may still be impractical to
include constraints for all ŷ. In such cases a useful approximation is to use only the top k
labels as ranked by the scoring function µ t−1 · f (x, ŷ), for some reasonable choice of k (see
Section 5). In the case of k = 1, the update of Equation (28) reduces to an update similar to
the update of the binary case, which we discuss in detail below. Since the update for Σ does
not depend on the loss function (or in fact the label at all), it is identical to the update of
Equation (15), where the input xt is replaced with the sum of the features over all labels:

Σt = Σt−1−
Σt−1 ft f>t Σt−1

r+ f>t Σt−1 ft
. (29)

where
ft = ∑

y
f (xt ,y) . (30)

Pseudo code for the algorithm appears in Figure 2.

11

We now move to the second update, which we refer to as the top-1 reduction. Let

ỹt = argmax
y6=yt

µ
>
t−1 f (xt ,y) (31)

be the closest competitor at the start of iteration t. Note, if the algorithm makes a prediction
mistake and ŷt 6= yt then ỹt = ŷt is the label with the largest inner-product value µ>t−1 f (xt ,z)
over all labels z. Otherwise, if the prediction is correct and ŷt = yt , then ỹt is the label with the
second-largest inner-product. Then, ignoring all other labels we perform a the top-1 update
using a binary update with features

∆ ft = f (xt ,yt)− f (xt , ỹt) (32)

assigned with a positive label. The update is summarized in Figure 3 and analyzed below.

4 Analysis

We start our analysis by showing that AROW can be combined with Mercer kernels (Mercer,
1909) using the following representer theorem.

Lemma 1 (Representer Theorem) Assume that Σ0 = I and µ0 = 0. The mean parameters
µ t and confidence parameters Σt produced by updating via Equation (12) and Equation (15)
can be written as linear combinations of the input vectors (resp. outer products of the input
vectors with themselves) with coefficients depending only on inner products of input vectors.

Proof: Formally, we need to show that the mean µ i and covariance Σi parameters computed
by Figure 1 can be written as:

Σt =
t

∑
p,q=1

π
(t)
p,qxpx>q + I , µ t =

t

∑
p=1

ν
(t)
p xp , (33)

where π and ν are scalars that depend only on inner products of input vectors. The proof
proceeds by induction. The base case follows from the definitions of µ0 and Σ0, and the
induction step follows algebraically from the update rules Equation (12) and Equation (15).

For the induction step we first substitute Equation (33) in Equation (12) to obtain

µ t = µ t−1 +αtΣt−1ytxt

=
t−1

∑
p=1

ν
(t−1)
p xp +αt

(
t−1

∑
p,q=1

π
(t−1)
p,q xpx>q + I

)
ytxt

=
t−1

∑
p=1

(
ν
(t)
p +

t−1

∑
q=1

αtπ
(t)
p,qytx>q xt

)
xp +αtytxt , (34)

which is of the desired form with

ν
(t)
p = ν

(t−1)
p +

t−1

∑
q=1

αtπ
(t)
p,qytx>q xt for p < t, ν

(t)
t = αtyt . (35)

Note that {ν(t)
p } can be written in terms of inner products of input vectors as long as αt can,

which follows directly from Equation (16).

12

Next, we substitute Equation (33) into Equation (15):

Σt = Σt−1−βtΣt−1xtx>t Σt−1

=
t−1

∑
p,q=1

π
(t−1)
p,q xpx>q + I−βt

(
t−1

∑
p,q=1

π
(t−1)
p,q xpx>q + I

)
xtx>t

(
t−1

∑
p,q=1

π
(t−1)
p,q xpx>q + I

)

=
t−1

∑
p,q=1

π
(t−1)
p,q xpx>q + I−βtxtx>t −βt

t−1

∑
p,q=1

π
(t−1)
p,q

(
(x>q xt)xpx>t +(x>p xt)xtx>q

)
−βt

t−1

∑
p,q=1

(
t−1

∑
r,s=1

π
(t−1)
p,r π

(t−1)
s,q (x>r xt)(x>t xs)

)
xpx>q . (36)

Gathering the appropriate terms in the above calculation, we have that the inductive hypoth-
esis holds with

π
(t)
p,q = π

(t−1)
p,q −βt∑

r,s
π
(t−1)
p,r π

(t−1)
s,q (x>r xt)(x>t xs)

π
(t)
p,t = π

(t)
t,p =−βt

t−1

∑
p,r=1

π
(t−1)
p,r

(
x>r xt

)
π
(t)
t,t =−βt . (37)

From these equations we see that {π(t)
p,q} can be computed via inner product as long as

βt can, which is implied by Equation (16). ut

We now turn to analyzing the number of mistakes AROW makes in the binary case.
Denote by M the set of example indices for which the algorithm makes a mistake (that is,
where yt

(
µ t−1 · xt

)
≤ 0) and let M = |M |. Similarly, denote by U the set of example indices

for which there is an update but not a mistake (0 < yt (µ t · xt) ≤ 1) and let U = |U |. The
remaining examples, for which the algorithm had a margin of at least one (1 < yt (µ t · xt)),
do not affect the behavior of the algorithm and can be ignored. We denote the outer product
of the mistakes by XM = ∑t∈M xix>i , the outer product of the errors by XU = ∑t∈U xix>i ,
and their sum by XA = XM +XU .

Theorem 1 For any reference weight vector u∈Rd , the number of mistakes made by AROW
with squared hinge loss (Figure 1) is upper bounded by

M ≤ ∑
t∈M∪U

gt +

√
r‖u‖2 +u>XA u

√
log
(

det
(

I +
1
r

XA

))
+U−U , (38)

where gt = max
(
0,1− ytu>xt

)
.

Before turning to the proof we highlight a few properties of the bound.

Remark 1 The bound compares the number of mistakes the algorithm makes to the hinge
loss of a reference vector. This asymmetry is typical of mistake bounds, e.g., those for the
second-order perceptron (Cesa-Bianchi et al, 2005) and the Perceptron (Gentile, 2003).

13

Fig. 4 Illustration of the mistake bound in two different settings. On the left, the separating hyperplane is
aligned with the primary axis of the data distribution, and most of the input vectors are near the hyperplane.
On the right, the separating hyperplane is aligned with the secondary axis of the data distribution, and most
of the input vectors are far from the hyperplane.

Remark 2 The two square root terms of the bound depend on r in opposite ways: the first
is monotonically increasing, while the second is monotonically decreasing. One could ex-
pect to optimize the bound by minimizing over r. However, the bound also depends on r
indirectly via other quantities (e.g., XA), so there is no direct way to do so.

Remark 3 If all of the updates are associated with errors, that is, U = /0, then the bound
reduces to the bound of the second-order perceptron (Cesa-Bianchi et al, 2005). In general,
however, the bounds are not comparable since each depends on the actual runtime behavior
of its algorithm.

Remark 4 Under the same conditions as the previous remark, U = /0, the second term of the
bound is a product of two quantities. The latter is logarithmic in the number of mistakes (or
even the total number of examples), while the first is a square root of a constant ‖u‖2 and a
quantity dependent on the geometry of the problem, u>XA u. If most of the data points with
mistakes lie near the hyperplane orthogonal to u, as illustrated by the left part of Figure 4,
this term will be small. On the other hand, if most of the data lies far from the hyperplane
orthogonal to u, as in the right part of Figure 4, the bound will be larger. Intuitively, data
points that lie near the labeling boundary tend to be more helpful for tuning the parameters.
(See also the third remark of Cesa-Bianchi et al (2005, Sec. 3.1).)

Remark 5 The bound has a non-trivial dependency on the number of updates. If u>XA u is
small, then making updates may reduce the bound, since it increases in

√
U and decreases

in U .

Remark 6 The bound of the Perceptron algorithm can be recovered from our bound for large
values of r. As r gets large, the bound becomes

M ≤ ∑
t∈M∪U

gt +

√
r‖u‖2

√
Tr
(

1
r

XA

)
+U−U , (39)

using the inequality log(det(I +A))≤ Tr(A). Next, assume ‖xt‖2 ≤ R2 for all t; this yields

M ≤ ∑
t∈M∪U

gt +

√
‖u‖2

√
(M+U)R2 + rU−U . (40)

14

For simplicity, let Lu = ∑t∈M∪U gt . Solving for M we have

M ≤Lu +
1
2
‖u‖2 R2 +

1
2
‖u‖R

√
4Lu +‖u‖2 R2 +4

rU
R2 −U . (41)

When updates are made only for mistakes, as in the Perceptron algorithm, U = 0 and we
recover the Perceptron bound.

Remark 7 We do not know of a bound for AROW with standard hinge loss, and leave it as
an open problem.

We now prove the theorem. We first prove two auxiliary lemmas.

Lemma 2 Let ˆ̀t = max
(
0,1− yt µ

>
t−1xt

)
and χt = x>t Σt−1xt . Then, for every t ∈M ∪U ,

u>Σ
−1
t µ t = u>Σ

−1
t−1µ t−1 +

ytu>xt

r
(42)

µ
>
t Σ
−1
t µ t = µ

>
t−1Σ

−1
t−1µ t−1 +

χt + r− ˆ̀2
t r

r (χt + r)
. (43)

The proof appears in Appendix A.

Lemma 3 Let T be the number of rounds. Then

∑
t

χt

χt + r
≤ log

(
det
(
Σ
−1
T+1
))

.

Proof: We remind the reader of the following definitions from Equation (16):

βt =
1

x>t Σt−1xt + r

Σt = Σt−1−βtΣt−1xtx>t Σt−1 .

Consider the quantity

x>t Σtxt = x>t
(

Σt−1−βtΣt−1xtx>t Σt−1

)
xt

= x>t Σt−1xt −βtx>t Σt−1xtx>t Σt−1xt

= χt −
χ2

t

χt + r

=
χt (χt + r)−χ2

t

χt + r

=
χtr

χt + r
. (44)

Using Lemma D.1 from Cesa-Bianchi et al (2005), we have that

1
r

x>t Σtxt = 1−
det
(
Σ
−1
t−1

)
det
(
Σ
−1
t
) . (45)

15

Combining Equation (44) and Equation (45),

∑
t

χt

χt + r
= ∑

t

1
r

x>t Σtxt = ∑
t

(
1−

det
(
Σ
−1
t−1

)
det
(
Σ
−1
t
))

≤−∑
t

log

(
det
(
Σ
−1
t−1

)
det
(
Σ
−1
t
))

≤ log

(
det
(
Σ
−1
T+1

)
det
(
Σ
−1
1

))
≤ log

(
det
(
Σ
−1
T+1
))

. (46)

ut
We are now ready to prove Theorem 1.

Proof: Since 1 ≤ max{0,1− a}+ a for any a, for all examples we have 1 ≤ gt + ytx>t u.
Summing over examples for which an error or update occurs yields

M+U ≤ ∑
t∈M∪U

gt + ∑
t∈M∪U

ytx>t u . (47)

Applying Lemma 2, we replace the second term with ∑t∈M∪U ytx>t u= r
(
u>Σ

−1
T µT

)
. Using

the Cauchy-Schwartz inequality, we have

r
(

u>Σ
−1
T µT

)
≤ r
√

u>Σ
−1
T u

√
µ>T Σ

−1
T µT . (48)

We now bound the two square root terms on the right hand side of Equation (48), starting
with the left term. By definition,

Σ
−1
T = I +

1
r ∑

t∈M∪U
xix>i = I +

1
r
(XM +XU) = I +

1
r

XA ,

and thus

u>Σ
−1
T u = ‖u‖2 +

1
r

u>XA u . (49)

For the right term we iterate the second equality to get

µ
>
T Σ
−1
T µT = ∑

t∈M∪U

χt + r− ˆ̀2
t r

r (χt + r)
= ∑

t∈M∪U

χt

r (χt + r)
+ ∑

t∈M∪U

1− ˆ̀2
t

χt + r
. (50)

Using Lemma 3, the first term of Equation (50) is upper bounded by 1
r log

(
det
(
Σ
−1
T

))
. For

the second term in Equation (50) we consider two cases. First, if a mistake occurred on
example t, then yt

(
xt ·µ t−1

)
≤ 0 and ˆ̀t ≥ 1, so 1− ˆ̀2

t ≤ 0. Second, if the algorithm made an
update (but no mistake) on example t, then 0 < yt

(
xt ·µ t−1

)
≤ 1 and ˆ̀t ≥ 0, thus 1− ˆ̀2

t ≤ 1.
We therefore have

∑
t∈M∪U

1− ˆ̀2
t

χt + r
≤ ∑

t∈M

0
χt + r

+ ∑
t∈U

1
χt + r

= ∑
t∈U

1
χt + r

≤ U
r
, (51)

where the last inequality holds since χt ≥ 0.

16

Plugging Equation (48), Equation (49), Equation (50) and Equation (51) into Equa-
tion (47), we get

M+U ≤ ∑
t∈M∪U

gt + r

√
‖u‖2 +

1
r

u>XA u

√
1
r

log
(
det
(
Σ
−1
T

))
+

U
r

= ∑
t∈M∪U

gt +

√
r‖u‖2 +u>XA u

√
log
(

det
(

I +
1
r

XA

))
+U ,

which concludes the proof. ut

4.1 Multi-class problems

In the multi-class setting, where there are K > 2 possible labels, we analyze the top-1 version
of AROW shown in Figure 3, which reduces the many-way decision at each iteration to a
binary choice between the true label and its current closest competitor.

To remind the reader, we assume that a feature function f (xt ,yt) ∈ Rd is given. The
multi-class prediction is ŷt = argmaxy [µ · f (x,y)], as defined in Equation (25), and the
competitor label is ỹt = argmaxy6=yt µ>t−1 f (xt ,y). The difference feature vector is ∆ ft =
f (xt ,yt)− f (xt , ỹt) (Equation (32)), and the update is defined in Figure 3. From this con-
struction, the top-1 hinge loss of the algorithm at time t is

ˆ̀t = max(0,1−µ
>
t−1∆ ft) , (52)

and the multi-class hinge loss of u is

gt = max
(

0,1+max
y6=yt

(u> f (xt ,y)−u> f (xt ,yt))

)
. (53)

It follows that gt ≥ 1− u>∆ ft , and this is enough to ensure that the mistake bound goes
through for the reduction. The proof has the same form as that of Theorem 1, but using the
definition

XA = ∑
t∈M∪U

∆ ft (∆ ft)
> .

We first state the analogue of Lemma 2.

Lemma 4 Let χt = (∆ ft)
>

Σt−1 (∆ ft), and assume the definitions of Equation (32) and
Equation (52). Then, for every t ∈M ∪U ,

u>Σ
−1
t µ t = u>Σ

−1
t−1µ t−1 +

u>∆ ft
r

(54)

µ
>
t Σ
−1
t µ t = µ

>
t−1Σ

−1
t−1µ t−1 +

χt + r− ˆ̀2
t r

r (χt + r)
. (55)

The proof is identical to the proof of Lemma 2 in Appendix A, but with yixt replaced by
∆ ft . We also have an analogue of Lemma 3, which is obtained by replacing the update of Σ

in Equation (15) with

Σt = Σt−1−
Σt−1 (∆ ft)(∆ ft)

>
Σt−1

r+(∆ ft)
>

Σt−1 (∆ ft)
. (56)

These lemmas suffice to prove the following mistake bound for AROW using the top-1
reduction from multi-class to binary classification. The proof exactly mirrors that of Theo-
rem 1, replacing the vector ytxt with the vector ∆ ft , and using Lemma 4 instead of Lemma 2.

17

Theorem 2 For any reference weight vector u ∈ Rd , the number of mistakes made by the
top-1 multiclass version of AROW (Figure 3) is upper bounded by

M ≤ ∑
t∈M∪U

gt +

√
r‖u‖2 +u>XA u

√
log
(

det
(

I +
1
r

XA

))
+U−U , (57)

where gt = max
(
0,1−maxy6=yt (−u> f (xt ,yt)+u> f (xt ,y))

)
as defined in Equation (53).

5 Empirical Evaluation

Our empirical evaluation investigates the effectiveness of AROW as both a binary and multi-
class classification algorithm. We consider how AROW performs compared with state-of-
the-art online classification algorithms in both clean and noisy settings. We also consider
several types of data: synthetic, binary document classification and digit recognition (OCR),
and multi-class document classification.

5.1 Setup

We selected three online learning baselines for comparison.

– Passive-Aggressive (PA) (Crammer et al, 2006): A large margin based online method
that uses additive updates to enforce a fixed margin for each training example. Updates
are made on margin violations (aggressive) but not otherwise (passive).

– Second Order Perceptron (SOP) (Cesa-Bianchi et al, 2005): An extension of the Per-
ceptron algorithm that captures second order information. It is similar to AROW, with
an important distinction being that it only updates on mistakes.

– Confidence-Weighted (CW) learning (Dredze et al, 2008): Similar to PA, except that
a distribution over weight vectors replaces a single weight vector hypothesis. CW is the
inspiration for AROW and is discussed in detail in Section 2. We use the “variance”
version developed by Dredze et al (2008).

Since we consider high dimensional datasets, it is computationally infeasible to model
all second order feature interactions for SOP, CW and AROW. Instead, we drop cross-feature
terms by projecting onto the set of diagonal matrices, following the approach of Dredze
et al (2008). While this may reduce performance, we make the same approximation for all
evaluated algorithms. We found this method performed similarly to other projection schemes
(Crammer et al, 2008).

All hyper-parameters (including r for AROW) and the number of online iterations (up
to 10) were optimized using a single randomized run. We used 2,000 instances from each
dataset and report all results over 10-fold cross-validation unless otherwise noted.

5.2 Synthetic Data

Our synthetic data experiments follow the setting of Crammer et al (2008). We generated
5,000 training examples in R20, where the first two coordinates were drawn from a 45◦

rotated Gaussian distribution with standard deviation 1. The remaining 18 coordinates were
drawn from independent Gaussian distributions N (0,2). Each point’s label depended on

18

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

200

400

600

800

1000

1200

1400

1600

Instances

M
is

ta
ke

s

Perceptron
PA
SOP
AROW−full
AROW−diag
CW−full
CW−diag

Fig. 5 Learning curves for AROW (full/diagonal) and baseline methods with 5k synthetic binary training
examples. 10% of the labels were flipped at random to create label noise. Results are averaged over 100 runs.

Perceptron PA 2nd Order AR−full AR−diag CW−full CW−diag
0

5

10

15

20

25

T
es

t E
rr

or

Fig. 6 Test results for AROW (full/diagonal) and baseline methods on 10k synthetic binary test examples
trained on 5k examples (Figure 5). Training label noise was set to 10% and test labels are unchanged. Results
are averaged over 100 runs.

the first two coordinates using a separator parallel to the long axis of the ellipsoid, yielding
a linearly separable set. (See Figure 4 (left) for an illustration.) To evaluate performance
degradation in noisy label settings, we randomly inverted the labels on 10% of the training
examples. Note that evaluation is still with respect to the correct labels, so we can evaluate
the true error rate. Since our synthetic data is low dimensional, we consider the full second
order versions of CW, SOP and AROW, as well as the diagonalized versions. Algorithm
parameters were tuned and results are reported over 100 runs.

5.2.1 Results

Figure 5 shows online learning curves for both the full and diagonalized versions of the three
baseline algorithms on synthetic noisy data. Because of the noisy labels, all algorithms con-
tinue to make mistakes as they encounter more data. CW learning improves over previous

19

methods, as reported in previous evaluations of CW (Crammer et al, 2008). We see further
improvements with AROW, with the full second order version producing the fewest number
of mistakes. For comparison, after 5,000 training examples, AROW-full has made about
75% fewer mistakes than the next best method (CW). Similar improvements are evident
after only 500 training examples. Note that AROW-full outperforms the diagonal version,
while CW-full performs worse than CW-diagonal, as has been observed previously for noisy
data (Crammer et al, 2008).

Figure 6 reveals a similar trend when the algorithms are evaluated in a batch setting with
10,000 test examples. CW is sensitive to label noise and attains a higher error rate compared
with AROW. In fact, CW is worse than both Perceptron and PA due to overfitting to the
label noise. This finding suggests that AROW, as a noise sensitive algorithm based on CW,
is particularly useful for noisy settings. Finally, both variants of AROW have low variance
in performance compared with all other algorithms.

5.3 Binary Classification

We selected a variety of binary document classification data sets reflecting different NLP
tasks. In total we consider 30 tasks from 4 data sets:

– Amazon: This dataset contains product reviews from Amazon.com that are labeled with
both a domain (e.g., books or music) and a star rating for the product (Blitzer et al,
2007). This data set is commonly used to evaluate multi-domain sentiment classification.
We used this data to create domain classification tasks, in which each task required
the classification of a document into one of two domains. We took all pairs of the six
domains to yield 15 tasks. Feature extraction follows Blitzer et al (2007), representing
each document as a set of bigram counts.

– 20 Newsgroups: 20 newsgroups is a commonly used text classification dataset that
includes approximately 20,000 newsgroup messages mined from 20 different news-
groups1. The dataset is a popular choice for binary and multi-class text classification
as well as unsupervised clustering. We used the version of the data with duplicates re-
moved. Following common practice, we created binary problems of choosing between
two similar groups:

comp: comp.sys.ibm.pc.hardware vs. comp.sys.mac.hardware

sci: sci.electronics vs. sci.med

talk: talk.politics.guns vs. talk.politics.mideast

These distinctions involve neighboring categories so they are fairly difficult to make.
This yielded 3 tasks. Each message was represented as a binary bag-of-words and there
were between 1850 and 1971 instances per task.

– Reuters (RCV1-v2/LYRL2004): The Reuters Corpus Volume 1 contains over 800,000
manually categorized newswire stories (Lewis et al, 2004). Labels describing the gen-
eral topic, industry, and region of each article are provided. We created binary decision
tasks by deciding between two industry labels, for a total of 3 tasks:

Insurance: Life (I82002) vs. Non-Life (I82003)
Business Services: Banking (I81000) vs. Financial (I83000)
Retail Distribution: Specialist Stores (I65400) vs . Mixed Retail (I65600)

1 http://people.csail.mit.edu/jrennie/20Newsgroups/

20

Noise level
Algorithm 0.0 0.05 0.1 0.15 0.2 0.3
AROW 1.51 1.44 1.38 1.42 1.25 1.25
CW 1.63 1.87 1.95 2.08 2.42 2.76
PA 2.95 2.83 2.78 2.61 2.33 2.08
SOP 3.91 3.87 3.89 3.89 4.00 3.91

Table 1 Mean rank (out of 4, over all datasets) at different noise levels. A rank of 1 on a task indicates that
an algorithm outperformed all the others, while a rank of 2 indicates that it was the second best performing
algorithm. These ranks are averaged over all tasks. With no noise, AROW is the best algorithm, outperforming
CW on a narrow majority of the tasks. As the noise level increases, the difference between AROW and the
other algorithms increase. Additionally, CW does worse and is eventually overtaken by PA.

0 2000 4000 6000 8000 10000

Instances
0

100

200

300

400

500

600

700

800

M
is

ta
ke

s

PA
CW
AROW
SOP

0 2000 4000 6000 8000 10000

Instances
0

500

1000

1500

2000

M
is

ta
ke

s

PA
CW
AROW
SOP

Fig. 7 Learning curves for AROW (diagonal) and baseline methods. MNIST 3 vs. 5 binary classification task
for different amounts of label noise (left: 0 noise, right: 10%).

Like 20 newsgroups, these distinctions involve neighboring categories so they are fairly
hard to make. Details on document preparation and feature extraction are given by Lewis
et al (2004). For each problem we selected 2,000 instances using a bag-of-words repre-
sentation with binary features.

– Sentiment: Using the same Amazon product reviews data, the goal is to classify a prod-
uct review as having either positive or negative sentiment. Feature representations are
the same as described above. We created a separate binary task for each of the 6 domains,
yielding 6 tasks.

– Spam: The ECML/PKDD Spam Challenge2 provides spam and ham emails for tradi-
tional spam classification. Data is provided for different users in two different tasks. We
selected three task A users and classify emails as spam or ham (3 tasks). The provided
data is already represented as features using bag-of-words.

In addition to binary document classification tasks, we also evaluate on two well known
digit recognition tasks (OCR): MNIST3 and USPS. For each of the data sets, we created
45 binary all-pairs tasks and an additional 10 one-vs-all tasks from the MNIST data (100
tasks). For these experiments, we report results using standard training and test splits instead
of 10-fold cross validation.

For every data set, we introduce noise at various levels by randomly and independently
flipping each binary label with a fixed probability (0, 0.05, 0.1, 0.15, 0.2, 0.3).

2 http://ecmlpkdd2006.org/challenge.html
3 http://yann.lecun.com/exdb/mnist/index.html

21

0.8 0.9 1.0
PA

0.6

0.8

1.0

AR
OW 20news

amazon
reuters
sentiment
spam

0.8 0.9 1.0
SOP

0.6

0.8

1.0

AR
OW

0.8 0.9 1.0
CW

0.6

0.8

1.0

AR
OW

0.6 0.8 1.0
PA

0.6

0.8

1.0

AR
OW

0.6 0.8 1.0
SOP

0.6

0.8

1.0

AR
OW

0.6 0.8 1.0
CW

0.6

0.8

1.0

AR
OW

0.6 0.8 1.0
PA

0.6

0.8

1.0

AR
OW

0.6 0.8 1.0
SOP

0.6

0.8

1.0

AR
OW

0.6 0.8 1.0
CW

0.6

0.8

1.0

AR
OW

0.90 0.95 1.00
PA

0.90

0.95

1.00

AR
OW

USPS 1 vs. All
USPS All Pairs
MNIST 1 vs. All

0.90 0.95 1.00
SOP

0.90

0.95

1.00

AR
OW

0.90 0.95 1.00
CW

0.90

0.95

1.00

AR
OW

0.6 0.8 1.0
PA

0.6

0.8

1.0

AR
OW

0.6 0.8 1.0
SOP

0.6

0.8

1.0

AR
OW

0.6 0.8 1.0
CW

0.6

0.8

1.0

AR
OW

0.6 0.8 1.0
PA

0.6

0.8

1.0

AR
OW

0.6 0.8 1.0
SOP

0.6

0.8

1.0

AR
OW

0.6 0.8 1.0
CW

0.6

0.8

1.0

AR
OW

Fig. 8 Accuracy on text (top) and OCR (bottom) binary classification. Plots compare performance between
AROW and a baseline method (left column: PA, center: SOP, right: CW), where markers above the line
indicate superior AROW performance. Label noise increases with each row (top to bottom: no noise, 10%
noise and 30% noise).

22

5.3.1 Results

To capture the large number of results for the four algorithms on multiple tasks at varying
noise levels, we summarize our results in two ways. First, we compute the mean rank of each
algorithm on all of the tasks. That is, for each task, we rank the four algorithms according
to their performance on that task, with a rank of 1 indicating an algorithm outperformed all
others and a rank of 4 for the worst algorithm. We then average these ranks over all of the
tasks and report the mean rank. While this obscures the raw accuracy differences between
each algorithm, it indicates general trends in the results.

Table 1 shows the mean rank for the four algorithms. With no noise in the labels, AROW
performs comparably to CW, edging it out slightly with a mean rank of 1.51 versus 1.63.
This indicates that across the tasks, AROW and CW consistently outperform the other meth-
ods (PA and SOP), which come in 3rd and 4th place respectively. This confirms previous
results for CW and demonstrates that AROW gives comparable performance.

Real differences emerge as we consider noisier settings. As the noise level increases,
CW gradually worsens relative to PA and AROW. At the 20% noise level, CW and PA are
comparable, and at the 30% noise level, PA easily outranks CW. Across all of these settings,
AROW improves with respect to the other methods.

Our second summarization of the results allows for direct comparison between pairs of
algorithms. We present the paired scores for each task as a point in a scatter plot with the
x-axis indicating the baseline accuracy and the y-axis indicating AROW accuracy. A line
with a slope of 1 allows for a direct comparison; for points above the line, AROW obtains
higher accuracy, while points below the line favor the baseline. We include scatter plots at
three different noise levels (0%, 10% and 30%); see Figure 8.

Consider in particular the comparison between AROW and CW, which perform simi-
larly on clean data. For the no noise setting (0%), most points are close to the line, with
the two algorithms performing similarly overall. As noise increases, however, the points
move further above the line, indicating the relative improvement of AROW over CW. In al-
most every high noise evaluation, AROW outperforms CW (as well as the other baselines).
Furthermore, Figure 7 shows the total number of mistakes (with respect to the noise-free
labels) made by each algorithm during training on the MNIST dataset for 0% and 10%
noise. Though absolute performance suffers with noise, the gap between AROW and the
baselines increases. These results clearly demonstrate that AROW achieves state-of-the-art
performance in general, and that dramatic improvements over baseline algorithms appear on
noisy data.

5.4 Multi-Class Classification

We next evaluate AROW on multi-class document classification tasks. We selected nine
tasks from five different data sets that vary in difficulty, size, and label/feature counts. An
overview of the properties of each task is shown in Table 2.

– Amazon: Using the Amazon data, we created two domain classification tasks from
seven product domains: apparel, books, dvds, electronics, kitchen, music, video. In Ama-
zon 7, we include all seven domains and in Amazon 3 we select the three most common:
books, dvds, and music. Feature extraction is the same as above.

– 20 Newsgroups: We use all messages from the 20 newsgroups, classifying them into
the newsgroups from which they originate. Feature extraction is the same as above.

23

Task Instances Features Labels Bal.
20 News 18,828 252,115 20 Y
Amazon 7 13,580 686,724 7 Y
Amazon 3 7,000 494,481 3 Y
Enron A 3,000 13,559 10 N
Enron B 3,000 18,065 10 N
NYTD 10,000 108,671 26 N
NYTO 10,000 108,671 34 N
NYTS 10,000 114,316 20 N
Reuters 4,000 23,699 4 N

Table 2 A summary of the nine tasks, including the number of instances, features, and labels, and whether
the numbers of examples in each class are balanced.

– Enron: The Enron email data set contains hundreds of thousands of email messages
for over 100 users.4 The data set has been used for numerous classification tasks. We
consider the task of automated sorting of emails into folders (Klimt and Yang, 2004;
Bekkerman et al, 2004). We selected two users with many email folders and messages:
farmer-d (Enron A) and kaminski-v (Enron B). We used the ten largest folders for
each user, excluding non-archival email folders such as “inbox,” “deleted items,” and
“discussion threads.” Emails were represented as binary bags-of-words with stop-words
removed.

– NY Times: The New York Times Annotated Corpus contains 1.8 million articles that
appeared from 1987 to 2007 (Sandhaus, 2008). In addition to being one of the largest
collections of raw news text, it is possibly the largest collection of publicly released
annotated news text. Among other annotations, each article is labeled with the desk
that produced the story (Financial, Sports, etc.) (NYTD), the online section to which
the article was posted (NYTO), and the section in which the article was printed (NYTS).
Articles were represented as bags-of-words with feature counts (stop words removed).

– Reuters: We used the Reuters corpus described above along with the four general topic
labels for topic classification: corporate, economic, government, and markets. Feature
extraction follows the setup above.

5.4.1 Results

We evaluated four multi-class algorithms on the seven multi-class data sets. First, we consid-
ered AROW with different sets of constraints: all (the full multi-class setting), one (the top-1
reduction described in Section 3.3), and five (a middle ground). A smaller set of constraints
leads to faster rounds during training, but may require more rounds to converge. Second, we
tested AROW with hinge loss in place of squared hinge loss, which we call AROW-H. We
also included four baselines:

– Perceptron: A multi-class Perceptron using a 1-of-k encoding.
– PA: A PA classifier with a 1-of-k encoding using a single constraint. Crammer et al

(2009a) found that a single constraint did well on these tasks.
– CW: A diagonal CW classifier with a single constraint.
– AdaGrad: A diagonally regularized dual averaging (RDA) version with L1 regulariza-

tion (Duchi et al, 2011).

4 http://www.cs.cmu.edu/~enron/

24

0.0 0.1 0.2 0.3 0.4 0.5

Label Noise
0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
g
.
A

cc
u
ra

cy

CW
AROW
PA
Perceptron
AdaGrad

0.0 0.1 0.2 0.3 0.4 0.5

Label Noise
0.0

0.1

0.2

0.3

0.4

0.5

A
v
g
.
%

 E
rr

o
r

In
cr

e
a
se

CW
AROW
PA
Perceptron
AdaGrad

Fig. 9 Results for the seven multi-class classification tasks using AROW (1 constraint) and three first base-
lines. Left: The average accuracy of each method on the seven tasks as a function of label noise. For all noise
settings, AROW remains the best performing method. As noise increases, PA overtakes CW, which gets much
worse. Right: The average increase in error for each method across the seven tasks as a function of label noise.

All experimental details (number of folds, parameter optimization, etc.) are the same
as the binary experiments above. For multi-class data, we randomly select another label to
replace the correct label in the case of label noise.

Despite the added complexity of the tasks, the results are qualitatively similar to the bi-
nary setting. AROW achieves the best performance overall in the zero noise setting; as noise
increases, AROW continues to be robust compared with other methods. To demonstrate this
effect, Figure 9 shows the impact of noise on each of the algorithms (with one constraint
in each case.) In Figure 9 (left) we plot the average accuracy on test data of each method
across the seven tasks (using 10-fold cross validation) as label noise increases from no noise
to 50% noise. While the general trend of all curves is downwards, the rate of decline is faster
for Perceptron and CW than for AROW and PA. As with binary data, PA eventually over-
takes CW with increased noise, while AROW remains the best algorithm. A similar trend
can be seen in Figure 9 (right), which show the average percentage increase in error for each
method with increased label noise.

Looking at individual tasks more closely, we observe that the number of constraints
has an impact similar to that seen in Crammer et al (2009a), where a single constraint was
found to be most effective. Here, across all tasks, the various constraint settings perform
similarly, suggesting that the single constraint algorithm, which is much faster, is sufficient
for learning. We include results for all noise settings (0.0, 0.1, 0.15, 0.2, 0.25, 0.5) in Tables
3, 4, 5, 6, 7 and 8 for completeness. Despite our attempts, the performance of AdaGrad was
not comparable to AROW or, in some instances, other baselines. This may be due to the fact
that it uses L1 regularization which promotes sparsity, yet may yield inferior performance.

Finally, we consider the impact of task difficulty on performance. Figure 10 shows the
average error reduction of AROW from the mean accuracy of the other 3 first baselines for
each task (y-axis) as a function of the overall difficulty of the task as measured by the mean
accuracy of the 3 first baselines (x-axis). Results are included for 3 different noise levels (0,
.1, .25). For each noise level, AROW shows larger improvements for tasks with higher mean
accuracy. This trend is reflected in the three lines, which are a best linear fit of each noise
level. Additionally, the slope of the lines increase with more noise, showing more significant
improvements in higher noise settings.

25

Label Noise = 0.0
Data Percep. MIRA CW AdaGrad AROW-H AROW 1 AROW 5 AROW all
20News 78.74 88.41 92.76 87.52 90.91 91.85 92.74 93.39
Enrom Kaminski 62.83 67.77 72.27 68.77 71.07 71.73 72.03 71.97
Enron Farmer 75.8 82.83 83.07 79.7 83.53 84.33 84.83 83.6
NYT Desk 77.7 81.22 82.43 74.7 81.19 81.74 81.97 81.98
NYT Online 76.91 81.11 82.62 75.25 81.97 82.7 82.67 82.59
NYT Section 48.53 56.42 54.62 54.69 56.71 55.49 56.05 56.65
Reuters 92.25 93.4 92.4 88.45 93.73 93.35 92.95 92.95
Sentiment 3 92.16 93.46 94.49 93.24 93.93 94.21 94.07 94.07
Sentiment All 74.06 76.31 78.41 74.78 77.64 77.84 78.4 78.49

Table 3 Accuracy on the multi-class data sets with no label noise.

Label Noise = 0.1
Data Percep. MIRA CW AdaGrad AROW-H AROW 1 AROW 5 AROW all
20News 66.77 85.27 88.77 86.68 88.08 86.31 88.3 89.33
Enrom Kaminski 55.43 68.07 67.03 67.37 68.8 69.07 68.93 69.27
Enron Farmer 67.33 69.73 74.5 78.87 80.07 80.23 80.87 80.93
NYT Desk 69.72 78.43 79.25 75.43 78.58 80.04 79.73 80.21
NYT Online 69.9 78.59 79.46 74.8 79.61 80.35 80.58 80.75
NYT Section 45.41 53.24 51.72 52.98 53.63 54.76 54.93 54.93
Reuters 82.1 88.38 90.63 87.97 91.33 91.63 92.1 92.1
Sentiment 3 86.41 92.19 93.43 93.09 93.87 93.49 93.53 93.53
Sentiment All 69.34 74.71 77.54 74.46 75.42 75.42 75.86 76.19

Table 4 Accuracy on the multi-class data sets with label noise of 0.1.

Label Noise = 0.15
Data Percep. MIRA CW AdaGrad AROW-H AROW 1 AROW 5 AROW all
20News 63.08 73.65 86.19 85.78 86.81 86.76 87.13 88.27
Enrom Kaminski 52.4 65.87 63.93 65.57 68.13 67.43 67.4 66.53
Enron Farmer 64.07 76.93 70.9 78.4 78.83 79.5 80.23 78.6
NYT Desk 67.09 77.46 77.63 75.59 77.92 78.83 78.8 79.46
NYT Online 66.14 78.16 77.97 76.03 78.61 79.1 79.26 79.8
NYT Section 42.6 54.11 50.12 52.51 54.84 52.98 52.66 53.59
Reuters 75.8 88.33 88.92 88.85 91.02 91.33 91.8 91.8
Sentiment 3 82.86 90.36 92.29 93.5 92.03 92.7 92.49 92.49
Sentiment All 66.07 75.98 77.05 73.88 76.17 74.15 75.9 76.04

Table 5 Accuracy on the multi-class data sets with label noise of 0.15.

Label Noise = 0.2
Data Percep. MIRA CW AdaGrad AROW-H AROW 1 AROW 5 AROW all
20News 56.51 78.02 82.89 84.34 86.1 84.76 83.73 86.45
Enrom Kaminski 48.8 63.6 60.1 64.2 64.07 65.47 65.33 66.3
Enron Farmer 58.53 74.37 67.17 78.23 76.37 78.43 77.63 77.67
NYT Desk 64.11 77.51 74.82 74.77 78.65 77.39 77.76 77.51
NYT Online 63.11 77.9 76.21 75.29 77.33 78.03 76.97 78.09
NYT Section 39.41 53.35 48.41 50.58 52.79 53.37 53.7 53.78
Reuters 72.78 87.92 86.88 88.77 88.5 89.9 90.3 90.3
Sentiment 3 80.39 92.59 91.76 93.29 93.27 92.74 92.8 92.8
Sentiment All 62.45 74.9 75.72 73.61 75.09 75.13 75.65 75.46

Table 6 Accuracy on the multi-class data sets with label noise of 0.2.

26

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mean Accuracy
�0.1

0.0

0.1

0.2

0.3

0.4

0.5

A
R

O
W

 E
rr

o
r

R
e
d
u
ct

io
n

Noise Level

0.0

0.1

0.25

Fig. 10 The overall difficulty of each task as measured by the mean accuracy of the three first baselines
(x-axis) versus the average improvement (error reduction) of AROW as compared to this mean (y-axis) for
each task at three different noise levels. The three lines are best linear fits for each noise level. Observe that
the slope of each line increases with additional noise, showing additional improvements in noisier settings.

Label Noise = 0.25
Data Percep. MIRA CW AdaGrad AROW-H AROW 1 AROW 5 AROW all
20News 51.38 80.16 76.6 82.17 84.95 82.37 82.72 82.36
Enrom Kaminski 48.27 59.17 57.6 61.6 63.67 58.3 59.07 62.13
Enron Farmer 53.57 73.1 61.93 76.07 75.37 77.5 76.67 77.8
NYT Desk 58.28 74.11 74.2 74.44 76.65 77.07 75.87 75.68
NYT Online 57.73 76.69 72.46 73.26 77.29 76.66 75.91 75.78
NYT Section 36.98 47.13 46.63 49.31 50.01 50.84 50.63 50.74
Reuters 68.17 87.38 82.78 88.67 89.0 89.2 88.77 88.77
Sentiment 3 75.97 91.5 89.19 92.41 92.79 91.63 91.24 91.24
Sentiment All 60.27 72.05 75.15 72.19 75.08 74.01 75.1 73.33

Table 7 Accuracy on the multi-class data sets with label noise of 0.25.

5.5 Discussion

To help interpret the results, we classify the algorithms evaluated here according to four
characteristics: the use of large margin updates, the use of parameter confidence weighting,
a design that accomodates non-separable data, and adaptive per-instance margin (Table 9).
While all of these properties can be desirable in different situations, we would like to under-
stand how they interact and achieve high performance while avoiding sensitivity to noise.

Based on the results it is clear that the combination of confidence information and large
margin learning is powerful when label noise is low. CW easily outperforms the other base-
lines in such situations, as it has been shown to do in previous work. However, as noise
increases, the separability assumption inherent in CW appears to reduce its performance
considerably.

AROW, by combining the large margin and confidence weighting of CW with a soft up-
date rule that accomodates non-separable data, matches CW’s performance in general while
avoiding degradation under noise. AROW lacks the adaptive margin of CW, suggesting that

27

Label Noise = 0.5
Data Percep. MIRA CW AdaGrad AROW-H AROW 1 AROW 5 AROW all
20News 34.21 50.46 56.0 55.95 64.82 62.01 64.15 65.6
Enrom Kaminski 31.23 46.23 37.4 41.93 46.67 45.7 44.73 43.97
Enron Farmer 38.2 58.27 41.07 54.33 58.83 58.7 58.17 58.53
NYT Desk 37.98 56.41 57.04 56.81 64.69 63.64 59.21 62.28
NYT Online 40.87 64.25 56.66 56.6 61.86 63.47 64.55 63.88
NYT Section 27.27 37.02 34.47 30.17 38.42 37.73 38.89 39.04
Reuters 47.38 75.58 58.93 73.32 75.5 75.2 75.73 75.73
Sentiment 3 53.89 72.0 68.86 72.53 69.3 59.04 79.39 79.39
Sentiment All 42.63 61.09 62.88 54.2 62.84 61.58 62.69 62.66

Table 8 Accuracy on the multi-class data sets with label noise of 0.5.

Large Conf- Non- Adaptive
Algorithm Margin idence Separable Margin
Perceptron No No Yes No
PA Yes No Yes No
SOP No Yes Yes No
CW Yes Yes No Yes
AROW Yes Yes Yes No
AROW-H Yes Yes Yes No
AdaGrad Yes Yes Yes No

Table 9 Online algorithm properties overview.

this characteristic is not crucial to achieving strong performance. We note that AROW-H and
AdaGrad have similar properties; however, we leave open for future work the possibility that
an algorithm with all four properties might have unique advantages.

6 Related Work

Online additive algorithms have a long history, from the Perceptron (Rosenblatt, 1958) to
more recent methods (Kivinen and Warmuth, 1997; Crammer et al, 2006). Our update has a
more general form in which the input vector xi is linearly transformed using the covariance
matrix, both rotating the input and assigning weight specific learning rates.

Confidence weighted (CW) (Dredze et al, 2008; Crammer et al, 2008) algorithms, from
which AROW was developed, update the mean and confidence parameters simultaneously,
while AROW makes a decoupled update and softens the hard constraint of CW. The AROW
algorithm can be seen as a variant of the PA-II algorithm by Crammer et al (2006), where
the regularization is modified according to the data. Additionally, future work might include
developing a batch version of AROW, for instance, in the way the Gaussian Margin Ma-
chines of Crammer et al (2009c) act as a batch version of CW. It might also be worthwhile
to explore the performance of AROW with an (approximated) full covariance matrix, which
has been shown to improve performance in some tasks (Ma et al, 2010).

AROW is perhaps most similar to the second order Perceptron (SOP) (Cesa-Bianchi
et al, 2005). SOP, CW, and AROW all maintain second-order information. SOP performs
the same type of update as AROW, but only in case of a true error. AROW, on the other
hand, updates even when its prediction is correct so long as there is insufficient margin.
Furthermore, SOP uses the current example in the correlation matrix for prediction, while
AROW updates after prediction. Fundamentally, CW and AROW have a probabilistic mo-
tivation, while the SOP is geometric, the idea being to replace the ball around an example

28

with a refined ellipsoid. However, a variant of CW similar to SOP follows from our deriva-
tion if we set αi = 1 in Equation (16). Shivaswamy and Jebara (2007) have applied a similar
motivation to batch learning.

The idea of using weight-specific variable learning rates has a long history in neural net-
work learning (Sutton, 1992), although we do not know of a previous model that specifically
models confidence in a way that takes into account the frequency of features.

Ensemble learning shares the idea of combining multiple classifiers. Gaussian process
classification (GPC) maintains a Gaussian distribution over weight vectors (primal) or over
regressor values (dual). Our algorithm uses a different update criterion than the standard
GPC Bayesian updates (Rasmussen and Williams, 2006, Ch.3), avoiding the challenge of
approximating posteriors. Bayes point machines (Herbrich et al, 2001) maintain a collec-
tion of weight vectors consistent with the training data, and use the single linear classifier
which best represents the collection. Conceptually, the collection is a non-parametric dis-
tribution over the weight vectors. Its online version (Harrington et al, 2003) maintains a
set of weight vectors that are updated simultaneously. The relevance vector machine (Tip-
ping, 2001) incorporates probability into the dual formulation of SVMs. As in our work, the
dual parameters are random variables distributed according to a diagonal Gaussian with ex-
ample specific variance. The weighted-majority (Littlestone and Warmuth, 1994) algorithm
and later improvements (Cesa-Bianchi et al, 1997) combine the output of multiple arbitrary
classifiers, maintaining a multinomial distribution over the experts. In this work, we assume
linear classifiers as experts and maintain a Gaussian distribution over their weight vectors.

With the growth of available data there is an increasing need for algorithms that process
training data very efficiently. A similar approach to ours is to train classifiers incremen-
tally (Bordes and Bottou, 2005). The extreme case is to use each example once, without
repetitions, as in the multiplicative update method of Carvalho and Cohen (2006).

In Bayesian modeling, there are several existing approaches that use parameterized dis-
tributions over weight vectors. Borrowing concepts from support vector machines, Jaakkola
et al (1999) developed maximum entropy discrimination methods, which employ a genera-
tive model for each class. The models are specified by distributions over weights as well as
margin thresholds, and the weights are learned using the maximum-entropy principle. In a
more recent approach, Minka et al (2009) proposed using additional virtual vectors to allow
more expressive power beyond a Gaussian prior and posterior.

Passing the output of a linear model through a logistic function has a long history in
the statistical literature, and is extensively covered in many textbooks (e.g. (Hastie et al,
2001)). Platt (1998) used similar ideas to convert the output of a support vector machine
into probabilistic quantities.

Hazan (2006) described a framework for gradient descent algorithms with logarithmic
regret in which a quantity similar to Σt plays an important role. Our algorithm differs in sev-
eral ways. First, Hazan (2006) considered gradient algorithms, while we derive and analyze
algorithms that directly solve an optimization problem. Second, we bound the loss directly,
not the cumulative sum of regularization and loss. Third, the gradient algorithms perform a
projection after making an update (not before) since the norm of the weight vector is kept
bounded.

Since the conference version of this work was published, several algorithms related to
CW and AROW have been proposed. Duchi et al (2011) and McMahan and Streeter (2010)
proposed replacing the standard Euclidean distance in stochastic gradient decent with gen-
eral Mahalanobis distances defined by second order feature information. Their analysis sug-
gets a logarithmic regret under some conditions, similar to our bounds here. However, the
precise forms of the bounds are not comparable in general. Recently, Orabona and Cram-

29

mer (2010) proposed a framework for online learning that includes an algorithm similar
to AROW as a special case. From a different perspective, Crammer and Lee (2010) pro-
posed a “microscopic” view of learning, tracking individual weight vectors as opposed to
just macroscopic quantities such as mean and covariance. Their update has similar form to
that of AROW (Equation (16)), but with different rates.

Shivaswamy and Jebara (2010b,a) proposed using second order information in the batch
setting where an independent and identically distributed set of training examples is assumed.
Their algorithm maximizes the (average) margin while also minimizing its variance. How-
ever, they do not maintain a distribution over weight vectors, and the probability space is
induced using the distribution over training examples.

Finally, there have been several additional applications of AROW. Mejer and Cram-
mer (2010) formulated a structured prediction learning algorithm based on CW, including
different strategies for estimating confidence in a prediction label. These same ideas can be
applied to AROW. Crammer (2010) applied CW to the common speech task of phone recog-
nition, which might likewise benefit from AROW due to inherent noise. Saha et al (2011)
developed a multi-task online learning framework based on the AROW objective. Finally,
AROW and the idea of confidence have been used for detecting phishing URLs (Le et al,
2010) and for learning language models (Ha-Thuc and Cancedda, 2011).

7 Summary

We have presented AROW, an online learning algorithm that improves performance in noisy
settings. Building on previous work on Confidence Weighted learning, AROW combines
several desirable properties of online learning algorithms: large margin training, confidence
weighting, and the capacity to handle non-separable data. The result is an algorithm that
outperforms existing online learning algorithms, especially in the presence of label noise.
Empirically, these trends hold up on a number of binary and multi-class data sets. Addi-
tionally, we derive a mistake bound that does not assume separability. Finally, our results
suggest that future research into an algorithm that maintains the benefits of AROW while
also using an adaptive margin could lead to a new robust method with potentially even better
performance.

Acknowledgements Part of this research was done when all authors were affiliated with the department of
information and computer science, the University of Pennsylvania. This work was partly supported by the
Israeli Science Foundation grant ISF-1567/10. This publication only reflects the authors’ views.

30

A Proof of Lemma 2

We present a detailed proof of Lemma 2. The first part follows the following chain of equalities,

u>Σ
−1
t µ t −u>Σ

−1
t−1µ t−1

= u>
(

Σ
−1
t−1 +

1
r

xt x>t

)(
µ t−1 +

`t

χt + r
Σt−1yt xt

)
−u>Σ

−1
t−1µ t−1

=
`t

χt + r
yt u>xt +

1
r

(
yt u>xt

) `t

χt + r

(
x>t Σt−1xt

)
+

1
r

(
yt u>xt

)(
yt µ
>
t xt

)
=

`t

χt + r
yt u>xt +

1
r

(
yt u>xt

) `t

χt + r
χt +

1
r

(
yt u>xt

)(
yt µ
>
t xt

)
=

`t

χt + r
yt u>xt +

1
r

(
yt u>xt

) `t

χt + r
χt +

1
r

(
yt u>xt

)(
−1+ yt µ

>
t xt +1

)
=

`t

χt + r
yt u>xt +

1
r

(
yt u>xt

) `t

χt + r
χt +

1
r

(
yt u>xt

)
(−`t +1)

=
yt u>xt

r (χt + r)
(`t r+ `t χt +(−`t +1)(χt + r))

=
yt u>xt

r (χt + r)
(`t (r+χt)+(−`t +1)(χt + r))

=
yt u>xt

r (χt + r)
(χt + r)

=
yt u>xt

r

For the upper bound we have the following chain of equalities,

µ
>
t Σ
−1
t µ t −µ

>
t−1Σ

−1
t−1µ t−1

=

(
µ
>
t−1 +

`t

χt + r
yt x>t Σt−1

)(
Σ
−1
t−1 +

1
r

xt x>t

)
×
(

µ t−1 +
`t

χt + r
Σt−1yt xt

)
−µ

>
t−1Σ

−1
t−1µ t−1

=
1
r

(
µ
>
t−1xt yt

)2
+

`2
t

(χt + r)2 x>t Σt−1xt +
`2

t

r (χt + r)2

(
x>t Σt−1xt

)2
+2

`t

χt + r
yt µ
>
t−1xt +2

`t

r (χt + r)

(
x>t Σt−1xt

)(
yt µ
>
t−1xt

)
=

1
r

(
1−1+µ

>
t−1xt yt

)2
+

`2
t

(χt + r)2 χt +
`2

t

r (χt + r)2 χ
2
t +2

`t

χt + r

(
yt µ
>
t−1xt −1+1

)
+2

`t

r (χt + r)
χt

(
1−1+ yt µ

>
t−1xt

)
=

1
r
(1− `t)

2 +
`2

t

(χt + r)2 χt +
`2

t

r (χt + r)2 χ
2
t +2

`t

χt + r
(1− `t)+2

`t

r (χt + r)
χt (1− `t)

=
1
r
(1− `t)

2 +
χt`

2
t

r (χt + r)2 (r+χt)+2
`t (1− `t)

r (χt + r)
(r+χt)

=
1
r

(
1− `2

t
)
+

χt`
2
t

r (χt + r)

=
χt`

2
t +χt + r− `2

t χt − `2
t r

r (χt + r)

=
χt + r− `2

t r
r (χt + r)

31

References

Bekkerman R, McCallum A, Huang G (2004) Automatic categorization of email into folders: Benchmark
experiments on Enron and SRI corpora. Center for Intelligent Information Retrieval, Technical Report IR
418:1

Bernal A, Crammer K, Hatzigeorgiou A, Pereira F (2007) Global discriminative learning for higher-accuracy
computational gene prediction. PLoS Comput Biol 3(3):e54

Blitzer J, Dredze M, Pereira F (2007) Biographies, bollywood, boom-boxes and blenders: Domain adaptation
for sentiment classification. In: ACL

Bordes A, Bottou L (2005) The huller: a simple and efficient online svm. In: European Conference on Ma-
chine Learning(ECML), LNAI 3720

Carvalho VR, Cohen WW (2006) Single-pass online learning: Performance, voting schemes and online fea-
ture selection. In: KDD-2006

Censor Y, Zenios S (1997) Parallel Optimization: Theory, Algorithms, and Applications. Oxford University
Press, New York, NY, USA

Cesa-Bianchi N, Freund Y, Haussler D, Helmbold DP, Schapire RE, Warmuth MK (1997) How to use expert
advice. Journal of the Association for Computing Machinery 44(3):427–485

Cesa-Bianchi N, Conconi A, Gentile C (2005) A second-order perceptron algorithm. Siam J of Comm 34
Chechik G, Sharma V, Shalit U, Bengio S (2010) Large scale online learning of image similarity through

ranking. The Journal of Machine Learning Research 11:1109–1135
Chiang D, Marton Y, Resnik P (2008) Online large-margin training of syntactic and structural translation

features. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, Asso-
ciation for Computational Linguistics, pp 224–233

Collins M (2002) Discriminative training methods for hidden markov models: Theory and experiments with
perceptron algorithms. In: Proceedings of the ACL-02 conference on Empirical methods in natural lan-
guage processing-Volume 10, Association for Computational Linguistics, pp 1–8

Crammer K (2010) Efficient online learning with individual learning-rates for phoneme sequence recognition.
In: IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP)

Crammer K, Lee DD (2010) Learning via Gaussian herding. In: Advances in Neural Information Processing
Systems 24

Crammer K, Singer Y (2003) Ultraconservative online algorithms for multiclass problems. Jornal of Machine
Learning Research 3:951–991

Crammer K, Dekel O, Shalev-Shwartz S, Singer Y (2003) Online passive aggressive algorithms. In: Advances
in Neural Information Processing Systems 16

Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y (2006) Online passive-aggressive algorithms.
Journal of Machine Learning Research 7:551–585

Crammer K, Dredze M, Pereira F (2008) Exact convex confidence-weighted learning. In: Neural Information
Processing Systems (NIPS)

Crammer K, Dredze M, Kulesza A (2009a) Multi-class confidence weighted algorithms. In: Empirical Meth-
ods in Natural Language Processing (EMNLP)

Crammer K, Kulesza A, Dredze M (2009b) Adaptive regularization of weight vectors. In: Advances in Neural
Information Processing Systems 23, pp 414–422

Crammer K, Mohri M, Pereira F (2009c) Gaussian margin machines. In: Proceedings of the Twelfth Inten-
tional Conference on Artificial Intelligence and Statistics (AISTATS)

Crammer K, Dredze M, Pereira F (2012) Confidence-weighted linear classification for text categorization.
Journal of Machine Learning Research (JMLR)

Dredze M, Crammer K, Pereira F (2008) Confidence-weighted linear classification. In: International Confer-
ence on Machine Learning

Duchi JC, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic opti-
mization. Journal of Machine Learning Research 12:2121–2159

Freund Y, Schapire RE (1999) Large margin classification using the perceptron algorithm. Machine learning
37(3):277–296

Frome A, Singer Y, Sha F, Malik J (2007) Learning globally-consistent local distance functions for shape-
based image retrieval and classification. In: IEEE 11th International Conference on Computer Vision

Gentile C (2003) The robustness of the p-norm algorithms. Machine Learning Journal 53(3):265–299
Ha-Thuc V, Cancedda N (2011) Confidence-weighted learning of factored discriminative language models.

In: Association for Computational Linguistics (ACL)
Harrington E, Herbrich R, Kivinen J, Platt J, Williamson R (2003) Online bayes point machines. In: 7th

Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)

32

Hastie T, Tibshirani R, Friedman J (2001) The Elements of Statistical Learning: Data Mining, Inference, and
Prediction. Springer

Haykin S (1996) Adaptive Filter Theory. Prentice Hall
Hazan E (2006) Efficient algorithms for online convex optimization and their applications. PhD thesis, Prince-

ton University
Herbrich R, Graepel T, Campbell C (2001) Bayes point machines. Journal of Machine Learning Research

(JMLR) 1:245–279
Jaakkola T, Meila M, Jebara T (1999) Maximum entropy discrimination
Jie L, Orabona F, Caputo B (2010) An online framework for learning novel concepts over multiple cues.

In: Zha H, Taniguchi Ri, Maybank S (eds) Computer Vision – ACCV 2009, Lecture Notes in Computer
Science, vol 5994, Springer Berlin / Heidelberg, pp 269–280, URL http://dx.doi.org/10.1007/
978-3-642-12307-8_25

Khardon R, Wachman G (2007) Noise tolerant variants of the perceptron algorithm. The journal of machine
learning research 8:227–248

Kivinen J, Warmuth MK (1997) Exponentiated gradient versus gradient descent for linear predictors. Infor-
mation and Computation 132(1):1–64

Klimt B, Yang Y (2004) The enron corpus: A new dataset for email classification research. Machine Learning:
ECML 2004 pp 217–226

Krogh A (1992) Learning with noise in a linear perceptron. Journal of Physics A: Mathematical and General
25:1119

Krogh A, Hertz J (1992) Generalization in a linear perceptron in the presence of noise. Journal of Physics A:
Mathematical and General 25:1135

Le A, Markopoulou A, Faloutsos M (2010) Phishdef: Url names say it all. Arxiv preprint arXiv:10092275
Lewis DD, Yang Y, Rose TG, Li F (2004) Rcv1: A new benchmark collection for text categorization research.

JMLR 5:361–397
Littlestone N (1988) Learning when irrelevant attributes abound: A new linear-threshold algorithm. Machine

Learning 2:285–318
Littlestone N, Warmuth MK (1994) The weighted majority algorithm. Information and Computation

108:212–261
Ma J, Kulesza A, Crammer K, Dredze M, Saul L, Pereira F (2010) Exploiting feature covariance in high-

dimensional online learning. In: AIStats
McDonald R, Crammer K, Pereira F (2005) Online large-margin training of dependency parsers. In: Proceed-

ings of the 43rd Annual Meeting on Association for Computational Linguistics, Association for Compu-
tational Linguistics, pp 91–98

McMahan HB, Streeter M (2010) Adaptive bound optimization for online convex optimization. In: Proceed-
ings of The twenty third Annual Conference on Learning Theory

Mejer A, Crammer K (2010) Confidence in structured-prediction using confidence-weighted models. In:
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Association
for Computational Linguistics, Stroudsburg, PA, USA, EMNLP ’10, pp 971–981, URL http://portal.
acm.org/citation.cfm?id=1870658.1870753

Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral
equations. Philos Trans Roy Soc London A 209:415–446

Minka TP, Xiang R, Qi YA (2009) Virtual vector machine for Bayesian online classification. In: Proceedings
of the twenty fifth Conference on Uncertainty in Artificial Intelligence

Orabona F, Crammer K (2010) New adaptive algorithms for online classification. In: Advances in Neural
Information Processing Systems 24

Platt JC (1998) Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. In: Bartlett P, Schölkopf B, Schuurmans D, Smola AJ (eds) Advances in Large Margin Classi-
fiers, MIT Press

Rasmussen CE, Williams CKI (2006) Gaussian Processes for Machine Learning. The MIT Press
Rosenblatt F (1958) The perceptron: A probabilistic model for information storage and organization in the

brain. Psychological Review 65:386–407, (Reprinted in Neurocomputing (MIT Press, 1988).)
Saha A, III HD, Venkatasubramanian S (2011) Online learning of multiple tasks and their relationships. In:

AISTATS
Sandhaus E (2008) The new york times annotated corpus. Linguistic Data Consortium, Philadelphia
Shivaswamy P, Jebara T (2007) Ellipsoidal kernel machines. In: Artificial Intelligence and Statistics (AIS-

TATS)
Shivaswamy P, Jebara T (2010a) Empirical Bernstein boosting. In: Teh Y, Titterington M (eds) Proceedings

of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS) 2010, vol
Volume 9 of JMLR: W&CP, pp 733–740

33

Shivaswamy PK, Jebara T (2010b) Maximum relative margin and data-dependent regularization. Journal of
Machine Learning Research 11:747–788

Sutton RS (1992) Adapting bias by gradient descent: an incremental version of delta-bar-delta. In: Proceed-
ings of the Tenth National Conference on Artificial Intelligence, MIT Press, pp 171–176

Tipping ME (2001) Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning
Research 1:211–244

Vaits N, Crammer K (2011) Re-adapting the regularization of weights for non-stationary regression. In: The
22nd International Conference on Algorithmic Learning Theory, ALT ’11

