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Abstract State-of-the-art statistical NLP systems for a variety of tasks learn from labeled
training data that is often domain specific. However, there may be multiple domains or
sources of interest on which the system must perform. For example, a spam filtering sys-
tem must give high quality predictions for many users, each of whom receives emails from
different sources and may make slightly different decisions about what is or is not spam.
Rather than learning separate models for each domain, we explore systems that learn across
multiple domains. We develop a new multi-domain online learning framework based on pa-
rameter combination from multiple classifiers. Our algorithms draw from multi-task learning
and domain adaptation to adapt multiple source domain classifiers to a new target domain,
learn across multiple similar domains, and learn across a large number of disparate domains.
We evaluate our algorithms on two popular NLP domain adaptation tasks: sentiment classi-
fication and spam filtering.
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1 Introduction

Machine learning algorithms typically learn a single task using training data that are repre-
sentative of data observed at test time. Formally, training and test data are usually assumed
to be drawn from the same distribution and labeled with the same decision function. In
this setting, the learning algorithm can infer properties of the distribution and labels from
observed data.

Reality is often more complex. Learning systems deployed on real world problems en-
counter multiple sources of data for which there may be different feature distributions and
different decision functions. A computational advertising system, for example, may rank ads
for queries that originate from many different countries, are in many different languages, and
cover a variety of product domains. A system trained on all queries together, agnostic with
respect to such properties, may benefit from having a large quantity of data on which to
learn. However, it may also be that data sources have conflicting properties that reduce the
performance of a single model trained in this fashion. In this case, it would be preferable
to train separate systems. In the end, both approaches (single and separate) are inadequate;
data sources typically share some common characteristics and behaviors and differ in oth-
ers. A single system obscures differences and separate systems ignore similarities. A hybrid
approach is in order.

The challenge of multiple domains is particularly relevant to natural language process-
ing (NLP) since statistical language systems require examples carefully labeled by trained
annotators. The Penn Treebank (Marcus et al. 1993), one of the most widely used corpora
for NLP applications, contains articles sampled from the Wall Street Journal. Since many
systems are trained exclusively on this corpus, they may perform poorly on other domains or
genres, such as biomedical texts (Lease and Charniak 2005; McClosky and Charniak 2008).
The problem becomes worse for informal text, such as blogs and emails. New vocabulary
items and writing styles confuse these systems.

Consider a multi-user spam filter, which must give high quality predictions for new users
(without new user data), learn on multiple users simultaneously, and scale to thousands
of accounts. While a single classifier trained on all users would generalize across current
users and extend to new ones, it would fail to learn user-specific preferences. Alternatively,
separate classifiers would capture user-specific behaviors but not generalize across users.

Responding to these challenges has been work in transfer learning, including domain
adaptation, or genre shift, and multi-task learning. In transfer learning, knowledge from a
source task or domain is transferred to a different but related task or domain. This is espe-
cially practical when there is plentiful data for one problem but limited or no labeled data
for the problem of interest. For example, a face recognition system trained on a large num-
ber of photographs taken indoors could be transfered to outdoor photographs where few
examples are available. In computational biology, mRNA splicing depends on the organ-
ism, and information learned from one organism could be adapted to a related organism
(Schweikert et al. 2008). In general, the transfer from one domain to another may rely on
small amounts of annotated data and/or large samples of unlabeled data, both from the tar-
get domain. However, common approaches typically focus on a one time transfer involving
significant computational resources.

We focus on multi-domain learning, which combines properties of domain adaptation
and multi-task learning in a flexible way. Like domain adaptation, we allow that different
domains may be drawn from different underlying distributions (Blitzer et al. 2007b; Jiang
and Zhai 2007a). For example, one user may receive emails about engineering while another
about art, differing in their distribution over features. Like multi-task learning, we also allow
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that the prediction function itself may change from domain to domain (Evgeniou and Pontil
2004; Dekel et al. 2006). For example, one user may enjoy some emails that another user
considers spam. Multi-domain learning unifies these two approaches by learning across both
distributions and behaviors.

In this work, our goal is to model prediction tasks across a variety of data sources, using
combined data to learn common behaviors while discriminating domain specific behaviors
and learning them separately. We focus on NLP multi-domain learning problems. We also
consider the standard adaptation setting, where there is no target domain data whatsoever.
We extend our multi-domain learning algorithm to handle a large number of disparate do-
mains, where common behaviors may not be common to every data source. Our central
method is to intelligently combine classifiers trained in different ways to take advantage of
their various strengths. For multi-domain learning, we combine domain-specific classifiers
with a shared classifier learned across all domains. In the adaptation setting, we combine
source domain classifiers for use in a new target domain. For large numbers of disparate
domains, we learn which domain-specific and shared classifiers to combine.

We base our algorithms on the recently introduced Confidence-Weighted (CW) learning
(Dredze et al. 2008; Crammer et al. 2008), an online learning algorithm for linear classifiers
that incorporates confidence about each parameter into the update. Parameter confidence
enables a more informed approach to combination, and we improve over the state of the art
performance of CW algorithms by learning across data from multiple domains. This paper
builds on previously published work (Dredze and Crammer 2008) by considering several
new alternative formulations for multi-domain learning algorithms. We introduce two new
objectives and show that previous work can be viewed as an approximation of one of these
objectives. Additionally, we provide further evaluations and analysis of previously published
methods.

We proceed with a formalization of the online multi-domain learning setting. After a re-
view of CW classification, we propose a new approach to multi-domain learning through pa-
rameter combination. We first use this approach in the standard domain adaptation setting on
several datasets. We then derive several generalizations of our approach to the multi-domain
learning setting. This approach is also extended to handle learning from many disparate do-
mains. Finally, we propose a method by which our approach can scale to many domains,
where learning each domain individually becomes prohibitive. We conclude with a review
of several related problems: domain adaptation, transfer learning and multi-task learning,
focusing on NLP research.

2 Multi-domain learning

With efficiency in mind, we focus our efforts on binary online multi-domain learning al-
gorithms, which process a single instance from a single domain at a time. Online algo-
rithms are widespread in NLP because they are simple to implement and scale to very
large datasets. Our algorithms will processes multiple streams of data from many different
sources, transferring knowledge between domains with each update. Information transfer is
achieved through a shared model that applies to all domains. Domain specific models are
combined with the shared models for prediction and learning. In this section we use θ to
refer generically to the entire collection of shared and domain specific parameters.

Online learning proceeds in rounds. On round t , the learner receives an instance x t ∈ R
N

from domain dt , drawn according to the fixed domain specific distribution Ddt . The learner
makes a prediction ŷt ∈ {−1,+1} based upon its current model parameters θt−1, then re-
ceives the true label yt ∈ {−1,+1}, determined by the domain specific labeling function
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Table 1 Notation and definitions

xt Instance on round t

ŷt Prediction on round t

yt Label on round t

dt Domain on round t

μt The mean of the distribution on round t

�t The covariance matrix of the distribution on round t

μz
i
,�z

i
The μ and � value for the ith parameter of classifier z

w The weight vector drawn from the model distribution

μ̃, �̃ Old model parameters before update

μ,� New model parameters after update

μc,�c Combined model parameters

μz,�z Individual model parameters

bz
i

The weight given to the ith parameter of classifier z in the combination

cz
i

The normalized weight bz
i

such that cz
i

= bz
i
/
∑

z∈Z bz
i

φ The free parameter for CW, defined as φ = �−1(η)

λ1, λ2 The weights for shared and domain specific parameters (λ2 = 2 − 2λ1)

k The number of underlying shared parameters

fdt (x t ). Finally, the learner updates its prediction parameters to θt based on this new infor-
mation.

To lighten notation, we will generally omit the subscripts t when describing updates that
take place during a single round. We use tildes to indicate the parameter values just before
the start of the round, and unadorned symbols to indicate the updated values. For example,
on round t , θ̃ ≡ θt−1 and θ ≡ θt .

3 Confidence-weighted linear classifiers

Confidence-weighted (CW) linear classification (Dredze et al. 2008; Crammer et al. 2008) is
an online learning algorithm for linear classifiers. CW maintains a probabilistic measure of
parameter confidence, which may be useful in combining parameters from different domain
distributions. We summarize CW learning to familiarize the reader.

Parameter confidence is formalized by a Gaussian distribution over weight vectors with
mean μ ∈ R

N and diagonal covariance � ∈ R
N×N . The values μi and �i,i represent knowl-

edge of and confidence in the parameter for feature i. The smaller �i,i , the more confidence
we have in the mean parameter value μi . (Using a full matrix � models second order fea-
ture interactions, which can be useful in many settings. However, in NLP tasks, where N

is typically very large, it is impractical to maintain N2 parameters. Therefore, we follow
the approach of Dredze et al. (2008) and consider diagonal covariance matrices, which only
require N additional parameters as compared with a standard linear model.)

For binary classification, a CW model predicts the highest probability label,

arg max
y∈{±1}

Prw∼N (μ,�)[y(w · x) ≥ 0].

The Gaussian distribution over parameter vectors w induces a univariate Gaussian distribu-
tion over the score S = w ·x parameterized by μ, � and the instance x: S ∼ N (μ,σ 2), with
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mean μ = μ · x and variance σ 2 = x��x. In practice, rather than sample a weight vector
from the distribution, we first compute the expected weight vector, which for Gaussian dis-
tributions is simply the mean parameters μ, and use it to make predictions with the familiar
rule: sign(μ · x). (A discussion of this rule’s relationship to other prediction rules can be
found in Crammer et al. 2008.)

The CW learning algorithm is inspired by the Passive Aggressive (PA) update (Crammer
et al. 2006), which ensures a positive margin on the current example while minimizing para-
meter change. CW replaces the Euclidean distance used in the PA update with the Kullback-
Leibler (KL) divergence over Gaussian distributions. It also replaces the minimal margin
constraint with a minimal probability constraint: with some given probability η ∈ (0.5,1] a
drawn classifier will assign the correct label. This strategy yields the following objective to
be solved on each round of learning:

(μ,�) = arg min DKL(N (μ,�)‖N (μ̃, �̃))

s.t. Pr[y(w · x) ≥ 0] ≥ η,

where (μ̃, �̃) are the parameters from the previous round and w ∼ N (μ,�). The constraint
ensures that the resulting parameters will correctly classify x with probability at least η.
For convenience we write φ = �−1(η), where � is the cumulative function of the normal
distribution. The constraint can be written as:

y(μ · x) ≥ φ
√

x��x.

While the square root appears to make the constraint non-convex, Crammer et al. (2008)
show that this objective is in fact convex in a modified parameter space. However, replacing
the standard deviation term with the variance (i.e., removing the square root) has been shown
to be a simple and effective approximation (Dredze et al. 2008) and we use that constraint
here as well.

The resulting optimization problem has an additive closed form solution:

μ = μ̃ + αy�̃x,

�−1 = �̃−1 + 2αφxx�.

We denote the current signed margin as M = y(μ̃ · x) and the variance of the margin as
V = x��̃x. We can solve for α using the quadratic equation, yielding the closed form

α = −(1 + 2φM) + √
(1 + 2φM)2 − 8φ(M − φV )

4φV
.

α is only positive when the constraint is violated, so updates are only computed when α > 0.
Each update changes the feature weights μ with an additive update similar to passive-

aggressive. The noticeable difference is the inclusion of �, which weighs the update to μ.
When a parameter has small � (high confidence) the update to this parameter is smaller in
favor of other lower confidence parameters. The name confidence weighted comes from this
behavior. Since α ≥ 0 for all updates, � is non-increasing. Every time the algorithm updates
a parameter, the confidence in that parameter increases.

Our choice of CW classifiers in this work is due to their parameter confidence values,
which provide an informed way to combine parameters from different classifiers. Addition-
ally, since we require per-parameter confidence estimates, other confidence based classifiers
that only provide confidence in the resulting predictions are not suitable for this setting.
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It should be noted that there are many techniques for combining the output of multiple
classifiers for ensemble learning or mixture of experts. Kittler et al. (1998) provide a the-
oretical framework for combining classifiers. Some empirical work has considered adding
versus multiplying classifier output (Tax et al. 2000), using local accuracy estimates for com-
bination (Woods et al. 1997), and applications to NLP tasks (Florian et al. 2003). However,
these papers consider combining classifier output for prediction. In contrast, we consider
parameter combination for both prediction and learning.

4 Multi-classifier parameter combination

The basis of our approach to multi-domain learning is to combine the parameters of CW
classifiers from separate domains while respecting their confidence estimates. A combina-
tion method takes a collection Z of CW classifiers, each parameterized by its own mean
and variance parameters {(μz,�z)}z∈Z and produces a single combined classifier (μc,�c).
A simple technique would be to average the mean parameters of classifiers into a new weight
vector, which is a common method for combining linear classifiers. However, this ignores
the difference in feature distributions and confidence learned by each model. Consider for
example a case in which the weight associated with some word in a source classifier has
a value near 0. This could suggest that the word is rare, but it might also be that it is sim-
ply neutral for prediction (like the work “the”). The information captured by � allows us
to distinguish between these two cases: high variance indicates a lack of confidence in the
value of the weight vectors because of a small number of examples (first case), and low
variance indicates that the value of the weight is based on significant evidence. We favor
combinations sensitive to this distinction.

Since CW classifiers are Gaussian distributions, we formalize classifier parameter com-
bination as finding a new distribution that minimizes the weighted divergence to a set of
given distributions:

(μc,�c) = arg min
μc,�c

∑

z∈Z

D(N (μc,�c)‖N (μz,�z);bz),

where the classifier specific importance-weights bz ∈ R
N+ can used to inject additional in-

formation into the combination, as discussed later. Since we use diagonal �, the distance
between each individual component is independent of the others. Thus the objective breaks
down into a sum of distances between each set of parameters:

D(N (μc,�c)‖N (μz,�z);bz) =
N∑

i=1

bz
i D(N (μc

i ,�
c
i )‖N (μz

i ,�
z
i )),

where μz
i is the μ value for the ith parameter of classifier z and �z

i is the � value for the
ith parameter of classifier z (the ith diagonal value).

We consider two choices for D. First, D can be a generalized squared Euclidean (
2)
distance between the parameters:

D(N (μc,�c)‖N (μz,�z);bz) = 1

2

N∑

i=1

bz
i [(μc

i − μz
i )

2 + (�c
i − �z

i )
2].
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We solve for (μc,�c) by setting the derivative of the objective to 0. For μc
i , we get

∑

z∈Z

bz
i (μ

c
i − μz

i ) = 0 ⇒ μc
i =

∑

z∈Z

cz
i μ

z
i ,

where we let cz
i = bz

i /
∑

z∈Z bz
i for convenience. Similarly,

�c
i =

∑

z∈Z

cz
i �

z
i .

Note that this is a (weighted) average of parameters; however, in this more general form we
can add confidence information through the choice of bz, as discussed later.

The second option is to set D to be the KL-divergence, which, since � is diagonal, can
be decomposed into the sum of KL-divergences between univariate Gaussians:

D(N (μc,�c)‖N (μz,�z);bz)

=
N∑

i=1

bz
i DKL(N (μc

i ,�
c
i )‖N (μz

i ,�
z
i ))

=
N∑

i=1

bz
i

2
(log(�z

i /�c
i ) + �c

i /�z
i + (μc

i − μz
i )

2/�z
i − 1).

Again, we solve by setting the derivative to 0. For μc
i this yields

∑

z∈Z

bz
i

�z
i

(μc
i − μz

i ) = 0 ⇒ μc
i =

(∑

z∈Z

cz
i

�z
i

)−1 ∑

z∈Z

cz
i

�z
i

μz
i .

In words, the combined mean parameters are a weighted average of the individual mean

parameters, with weights proportional to
cz
i

�z
i
. For �c

i we get

∑

z∈Z

bz
i (−1/�c

i + 1/�z
i ) = 0 ⇒ �c

i =
(∑

z∈Z

cz
i /�z

i

)−1

,

which is a weighted harmonic mean of the individual confidence parameters.
While each parameter is naturally weighed by its variance in the KL version, we can also

explicitly encourage this sort of behavior (which favors high confidence values) by setting
bz

i = a −�z
i ≥ 0, where a is the initialization value for �z

i . This will prove helpful when the
KL is difficult to compute, since we can achieve similar intuition using the simpler 
2 com-
bination. We call this type of b-weighting “variance,” as opposed to uniform (bz

i = 1). We
therefore have two combination methods (
2 and KL) and two weighting methods (uniform
and variance).

5 Datasets

For evaluation we selected two domain adaptation datasets: spam (Jiang and Zhai 2007a)
and sentiment (Blitzer et al. 2007b).
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Spam The ECML/PKDD spam data contains a single task with multiple users. The goal is
to classify an email as either spam or ham (not-spam). Each of the users may have slightly
different preferences and features. The task contains two sets of data, one with three users
(task A) and one with 15 (task B). Each user has a collection of spam and ham email mes-
sages, where an email message is represented as a bag-of-words. We used 700 training
messages for each user in set A and 100 training messages for each user in set B. For both
sets we selected 300 test emails for each user.

Sentiment The goal of the sentiment task is to classify a product review as being either
positive or negative in its evaluation about the product. Product reviews are drawn from user
product feedback on Amazon.com. Reviews are selected from seven product types: apparel,
books, DVDs, electronics, kitchen appliances, music and videos. Each review is represented
by features of unigram and bigrams counts.

In addition to having each of the seven product types as a separate domain, we created
different datasets by mixing the different domains and modifying the decision boundary. The
decision boundary—the boundary between positive and negative reviews—was modified by
using the ordinal rating of each instance (1–5 stars) and excluding boundary instances, i.e.,
positive reviews are above 2 starts while negative are below 2 stars, etc. We created four sets
of data through this mixing process.

– All—The 7 Amazon domains, one for each product category.
– Books—3 domains all drawn from the books product reviews, with each using a different

decision boundary for positive and negative examples (2, 3 and 4 stars).
– DVDs—This is the same as the Books dataset (different decision boundaries) but DVD

reviews are used instead.
– Books + DVDs—A combination of the data used in the Books and DVDs data above.

This gives six domains with varying decision boundaries.

The All dataset captures the typical domain adaptation scenario, where each domain has
the same decision function but different features. Books and DVDs have the opposite prob-
lem: the same features but different classification boundaries. Books + DVDs combines both
issues into a single task. For every experiment with the sentiment data we use 1500 training
instances and 100 test instances per domain.

6 Multi-domain adaptation

We begin by examining the typical domain adaptation scenario, but from an online perspec-
tive since learning systems often must adapt to new users or domains quickly and with no
training data. For example, a spam filter with separate classifiers trained on each user must
also classify mail for a new user. Since other users’ training data may have been deleted or
kept private, the existing classifiers must be combined for the new user.

We combine the existing user-specific classifiers into a single new classifier for a new
user. Since nothing is known about the new user (in particular, their decision function),
every source classifier could be relevant. However, feature similarity—possibly measured
using unlabeled data—can be used to weigh source domains. Specifically, we combine the
parameters of each classifier according to their confidence using the combination methods
described above.

We evaluated the four combination strategies—
2 vs. KL, uniform vs. variance—on
spam and sentiment data. For each evaluation, a single domain was held out for testing
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while separate classifiers were trained on each source domain, i.e., no target training. Source
classifiers were then combined and the combined classifier evaluated on the test data (400
instances) of the target domain. This evaluates the ability of a classifier to adapt from several
observed domains to a new unobserved domain.

A separate classifier was trained for 5 online iterations over one of the domains in the
training data. (5 iterations seemed to ensure convergence.) The resulting classifiers were then
combined and tested on the target domain. We repeated each experiment using 10-fold cross
validation. Additionally, the CW parameter φ was tuned by selecting a single randomized
split of the data for each experiment.

We include several baselines:

– Target—Train on the held out target domain. This indicates the possible performance if
we obtained labeled data for the unobserved target domain.

– All Source—Train a single classifier on all of the source domains. This is a useful strategy
if we could maintain all observed source data and then retrain when informed of a new
domain.

– Best Source—Select the closest known domain to the target domain by selecting the best
performing classifier from classifiers trained individually on each domain. This is the
best possibility with omniscience, i.e., knowing what the performance of each available
classifier will be on the new data.

– Average Source—Take the average performance of each of the existing source domain
classifiers applied to the target domain. This is the expected real world performance of
randomly selecting a source classifier for the new target domain.

While at least one source classifier achieved high performance on the target domain (Best
Source), the correct source classifier cannot be selected without target data and selecting a
random source classifier yields high error. In contrast, a combined classifier almost always
improved over the best source domain classifier (Tables 2 and 3). We observe that some
of our results improve over the best training scenario, i.e., combinations can be better than
performance using target domain data. This is likely due to the increase in training data
available by using multiple domains. We note with interest that our combinations sometimes
improve over All Source (for Music and Video). This may be due to a regularization effect
of training separate models.

Table 2 Test error for multi-source adaptation on sentiment data over 10-fold cross validation. Combining
classifiers improves over selecting a single classifier a priori (Average Source)

Apparel Books DVD Kitchen Elect. Music Video

Train All Src 12.32 16.85 13.65 13.65 15.00 18.20 17.00

Target 12.02 18.95 17.40 14.40 14.93 18.30 19.27

Best Src 14.12 22.95 17.30 15.52 15.52 20.75 19.43

Average Src 21.15 25.76 21.89 22.88 23.84 24.19 25.78


2 Uniform 14.03 19.58 15.53 16.68 18.75 18.38 17.13

Variance 13.18 18.63 13.73 15.10 17.37 17.83 16.25

KL Uniform 13.50 19.53 14.48 14.78 17.45 18.10 16.33

Variance 13.48 19.05 14.15 14.02 16.82 18.22 16.42
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Table 3 Test error for
multi-source adaptation
on spam data over 10-fold
cross validation. Combining
classifiers improves over
selecting a single classifier
a priori (Average Source)

User 0 User 1 User 2

Train All Src 3.85 3.57 3.30

Target 1.80 3.17 2.40

Best source 4.80 4.28 3.77

Average source 8.26 6.91 5.75


2 Uniform 5.25 4.53 4.75

Variance 4.63 3.80 4.60

KL Uniform 4.53 4.23 4.93

Variance 4.32 3.83 4.67

The 
2 methods performed best, yielding the best classifier on 7 out of 10 combinations.
Clearly, classifier parameter combination is an effective way of obtaining good classifiers
without prior knowledge of the target domain.

7 Learning across domains

In addition to adapting to new domains, multi-domain systems should learn common behav-
iors across domains. Naively, we can assume that the domains are either sufficiently similar
to warrant one classifier or different enough for separate classifiers. The reality is often
more complex. Instead, we maintain shared and domain-specific parameters and combine
them for learning and prediction. So far we have seen the value of parameter confidence
combinations for prediction. In this section we investigate their usefulness for learning.

Multi-task learning aims to learn common behaviors across related problems, a similar
goal to multi-domain learning. The primary difference is the nature of the domains/tasks. In
our setting, while the prediction function for each domain may differ, we seek to perform the
same task (e.g. spam filtering) on each domain, i.e., the possible outputs for each domain are
the same (spam/ham). In contrast, multi-task settings have several different tasks (different
outputs) over the same inputs (features). The commonality between these two settings is that
the different prediction functions are related and we seek to adapt a multi-task approach to
our multi-domain setting by using our classifier combination techniques.

We seek to learn domain specific parameters guided by shared parameters. Dekel et al.
(2006) followed this approach for an online multi-task algorithm, although they did not have
shared parameters and assumed that a training round comprised an example from each task.
Evgeniou and Pontil (2004) achieved a similar goal by using shared parameters for multi-
task regularization. Specifically, they assumed that the weight vector for problem d could
be represented as wc = wd + ws , where wd are task specific parameters and ws are shared
across all tasks. In this framework, all tasks are close to some underlying mean ws and each
one deviates from this mean by wd . Their SVM style multi-task objective minimizes the loss
of wc and the norm of wd and ws , with a tradeoff parameter allowing for domain deviance
from the mean. The simple domain adaptation algorithm of feature splitting used by Daumé
(2007) is a special case of this model where the norms are equally weighted.

In the case of SVM learning, the appropriate combination is to take the sum of the pa-
rameters. Since the resulting prediction and update are independent of the scaling of the
weights, an average is unnecessary. However, the combination methods we considered above
are more appropriate for the CW setting. We can define a similar objective to Evgeniou and
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Pontil (2004) by replacing the summation of parameters with a combination method using a
distance function D and recast the SVM objective (minimize the norm of the parameters) in
the CW framework.

Unlike Evgeniou and Pontil (2004), we work in the online setting, where examples arrive
in rounds. We wish to derive an online update for parameters (μz,�z) in terms of the current
example (x, y) and the old parameter values. We want to guarantee that after each iteration
the combined distribution yields a correct prediction for x with high probability, while also
making the smallest possible change from the existing parameters (μ̃z

, �̃z). We consider
two different ways of formalizing the latter objective.

First, we can directly minimize the sum of KL-divergences across the base classifiers; in
other words, given current parameters {(μ̃z

, �̃z)}z∈Z , minimize

∑

z∈Z

DKL(N (μz,�z)‖N (μ̃z
, �̃z))

subject to the prediction constraint. This can be thought of as distribute then update, since the
combination is first distributed to the individual parameters and then an update is computed.
Alternatively, we can minimize the KL-divergence of the combination distribution itself,
namely

DKL(N (μc,�c)‖N (μ̃c
, �̃c)).

This can be thought of as update then distribute, since the update is compute using the com-
bined distribution, and then distributed to each individual parameter. Since the combination
distribution is derived from other parameters, we then need to decide how to change those
underlying parameters to achieve the resulting desired combination distribution. We can
do this in some cases by making an average update, or more carefully by minimizing the
KL-divergences of the base classifiers subject to the combination result. We discuss these
options more carefully in the context of specific combination rules.

We call this framework Multi-Domain Regularization (MDR). The algorithm maintains
a set of shared parameters and a set of domain specific parameters for each domain. The
domain specific parameters are used for each individual domain and the shared parameters
are used on all domains. On each round, the algorithm receives instance x and domain d for
which it creates a combined classifier (μc,�c) using the shared and domain specific parame-
ters. A prediction is issued using the standard linear classifier prediction rule sign(μc · x).
The shared and domain specific parameters are then updated using one of the objectives
above, which are further developed in the next section.

For each algorithm we introduce in the next section we consider two evaluation settings.
First, we evaluate each algorithm using a single pass over a stream of instances from mul-
tiple domains, simulating a real world setting. In this setting algorithms that adapt quickly
to multiple domains perform better since they make the most out of seeing each example
once. We also consider the standard batch setting, where online algorithms are run multiple
times over the data. We use 10 online training iterations. In this setting, baseline methods
will improve since they can examine every example multiple times, reducing the need for
learning extra information across domains. As before, the CW parameter φ is optimized on
a single randomized run for each dataset. Each experiment is run over 10 random divisions
of the data into train and test splits. We report results as error on the held out test data.

In addition to evaluating our multi-domain learning methods, we evaluate the perfor-
mance of a single classifier trained on all domains (Single) and a separate classifier trained
on each domain (Separate). We also include results for Feature Splitting based on the work
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Table 4 Results show average test error across 10 runs in a true online setting. Each dataset contains multiple
domains. The results show the error achieved by training a single classifier or separate classifiers for each
domain. The feature splitting method of Daumé (2007) performs the best since it can balance between shared
and domain specific behaviors

Spam Sentiment

Task A Task B Books DVD Books DVD All

Single 2.11 6.60 17.77 17.40 18.10 14.34

Separate 2.93 8.64 19.67 19.87 18.70 16.96

Feature splitting 1.94 5.51 9.97 9.70 9.05 14.73

Table 5 Results for the same tests as in Table 4 but run as a batch algorithm with 10 online training iterations

Spam Sentiment

Task A Task B Books DVD Books DVD All

Single 1.54 5.09 17.87 17.43 18.15 13.76

Separate 1.90 7.07 19.73 20.30 18.95 16.06

Feature splitting 1.38 4.21 7.67 6.97 7.02 13.37

of Daumé (2007). We note that in the online setting, for equally weighted parameter sets
the method of Evgeniou and Pontil (2004) reduces to Feature Splitting. Therefore, we can
compare our algorithms to this method to determine the improvements gained by using more
advanced classifier combination methods in this setting.

Table 4 shows the results of a single pass over the training data for this baseline on the
spam and sentiment data. Batch setting results are shown in Table 5. In almost every case,
feature splitting improves over a single or separate classifiers. Therefore, we will compare
algorithms in the next section to feature splitting. We also note that for the All dataset for
spam, which contains reviews from many domains, the most effective strategy is to train a
single classifier. For sentiment data feature distributions change between domains but the
decision functions remain mostly the same. Therefore, the most effective strategy is to com-
bine all data into a single set. We will observe the ability of our multi-domain learning
algorithms to adapt to this setting by learning behaviors in the shared parameters.

7.1 Base classifier divergence

Given instance features x and correct label y, we want to compute the solution to the fol-
lowing optimization, where weight vector wc is drawn from the combination distribution
N (μc,�c) as defined in Sect. 4

min
{(μz,�z)}z

∑

z∈Z

DKL(N (μz,�z)‖N (μ̃z
, �̃z))

s.t. Pr[y(wc · x) > 0] ≥ η.

(1)

The constraint can be rewritten

y(μc · x) ≥ φ
√

xT �cx,
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where φ = �−1(η) and � is the Gaussian cumulative distribution function. We drop the
square root to get a variance constraint, as described in Sect. 3.

The Lagrangian of the resulting optimization is

∑

z∈Z

DKL(N (μz,�z)‖N (μ̃z
, �̃z)) − α(y(μc · x) − φxT �cx).

Since all � are diagonal and μc
i and �c

i depend only on the values of μz
i and �z

i for
various z, we can decompose the entire Lagrangian into the following sum of N terms

N∑

i=1

[∑

z∈Z

1

2
(log(�̃z

i /�z
i ) + �z

i /�̃
z
i + (μz

i − μ̃z
i )

2/�̃z
i − 1) − α(yμc

i xi − φ�c
i x

2
i )

]

. (2)

We now take the derivative with respect to μz
i

1

�̃z
i

(μz
i − μ̃z

i ) − αy
∂μc

i

∂μz
i

xi .

Here we assume, as is the case for both of our combination methods, that ∂�c
i /∂μz

i = 0.
Setting the Lagrangian derivative to zero yields the update rule

μz
i = μ̃z

i + αy�̃z
i

∂μc
i

∂μz
i

xi .

This rule is like the single-domain CW update in that low values of �̃z
i (high confidence)

lead to smaller parameter updates, while less confident parameters undergo larger adjust-
ments. Here, however, there is the additional factor ∂μc

i /∂μz
i , which roughly suggests that

parameters contributing more to the combination should receive larger updates.
Performing the same calculations for �z

i yields

1

2
(−1/�z

i + 1/�̃z
i ) − α

(

y
∂μc

i

∂�z
i

xi − φ
∂�c

i

∂�z
i

x2
i

)

and the corresponding update is

1

�z
i

= 1

�̃z
i

+ 2αφ
∂�c

i

∂�z
i

x2
i − 2αy

∂μc
i

∂�z
i

xi .

The partial derivates
∂μc

i

∂μz
i
,

∂�c
i

∂�z
i

and
∂μc

i

∂�z
i

depend on the chosen combination method.

7.1.1 
2 Distance

When combination is performed using 
2 distance, we have the following partial derivatives

∂μc
i

∂μz
i

= cz
i ,

∂�c
i

∂�z
i

= cz
i ,

∂μc
i

∂�z
i

= 0.

This simplifies the update rules to

μz
i = μ̃z

i + αy�̃z
i c

z
i xi,
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1

�z
i

= 1

�̃z
i

+ 2αφcz
i x

2
i .

Following the update, the new combination parameters are given by

μc
i =

∑

z∈Z

cz
i μ

z
i

=
∑

z∈Z

cz
i (μ̃

z
i + αy�̃z

i c
z
i xi)

= μ̃c
i + αyxi

∑

z∈Z

cz
i

2
�̃z

i , (3)

�c
i =

∑

z∈Z

cz
i �

z
i

=
∑

z∈Z

cz
i

(
1

�̃z
i

+ 2αφcz
i x

2
i

)−1

. (4)

We solve for α by treating the constraint as an equality (which holds by the KKT condi-
tions at optimum unless α = 0). This yields the following

y(μc · x) = φxT �cx

⇒ y

N∑

i=1

(

μ̃c
i + αyxi

∑

z∈Z

cz
i

2
�̃z

i

)

xi = φ

N∑

i=1

∑

z∈Z

cz
i

(
1

�̃z
i

+ 2αφcz
i x

2
i

)−1

x2
i

⇒
N∑

i=1

[

yμ̃c
i xi + x2

i

∑

z∈Z

(

αcz
i

2
�̃z

i − φcz
i

(
1

�̃z
i

+ 2αφcz
i x

2
i

)−1)]

= 0.

We can solve this equation using a line search on α. A similar approach was taken by
Dredze et al. (2008) in computing an exact solution for a diagonalized CW update.

Unfortunately, it is not possible to obtain a similar form for a KL-divergence combina-
tion update. Since the combination for μ̃c

i relies on �̃z
i , the updates for both μc and �c are

interdependent. There are several simplifying assumptions that help to reduce the complex-
ity of the update, such as assuming only two sets of parameters—as in our case here—and
replacing the value of �̃z

i in the combination of μ̃c
i with a constant, thereby reducing the de-

pendency between the parameters. Still, these approaches were insufficient and a KL update
depends on solving a system of equations. Since we favor fast online methods, we did not
pursue this update.

7.1.2 Evaluation

We evaluated objective (1) using both uniform and variance weightings. Results are shown
in Table 6 for the online setting and in Table 7 for the batch setting. In general, uniform
weighting performs better than variance and we carry this method forward for comparison.
Unfortunately, the new MDR objective outperforms feature splitting on only two out of six
datasets. In the batch setting, feature splitting does better every time. Upon examination, we
observed that the algorithm behaved aggressively and seemed to over-fit the training data.
These results are similar to those obtained by Dredze et al. (2008) who used a line search
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Table 6 Results show average test error across 10 runs in a true online setting. Each dataset contains mul-
tiple domains. In the majority of the datasets, the feature splitting baseline beats the MDR objective (1).
An analysis showed that this MDR objective led to over-fitting of the data

Spam Sentiment

Task A Task B Books DVD Books DVD All

Feature splitting 1.94 5.51 9.97 9.70 9.05 14.73

Equation (1): 
2 uniform 3.30 6.67 11.03 8.93 8.48 15.40

Equation (1): 
2 variance 3.43 8.09 10.67 10.53 14.45 15.09

Table 7 Results for the same tests as in Table 6 but run as a batch algorithm with 10 online training iterations

Spam Sentiment

Task A Task B Books DVD Books DVD All

Feature splitting 1.38 4.21 7.67 6.97 7.02 13.37

Equation (1): 
2 uniform 2.82 6.45 11.00 10.30 8.73 15.33

Equation (1): 
2 variance 3.13 6.98 10.17 10.43 13.17 15.01

to solve an exact CW diagonal method and observed over-fitting. In their case an exact
solution was too aggressive and a relaxation produced superior performance. Additionally,
the aggressive nature of the algorithm reduced the values of � quickly, which may have lead
to numerical instability in estimating solutions for α using a line search. This problem could
be addressed by finding a closed form MDR update. We consider both of these issues in the
next section.

7.2 Combined classifier divergence

An alternative update method is to minimize the change in combined classifier distribution
rather than the underlying base classifier distributions. This objective computes a regular
CW update and then distributes it to the combination’s underlying parameters. We compute
the solution to the following optimization

min
μc,�c

DKL(N (μc,�c)‖N (μ̃c
, �̃c))

s.t. Pr[y(wc · x) > 0] ≥ η.
(5)

The constraint can be rewritten as before, and dropping the square root yields the following
Lagrangian

DKL(N (μc,�c)‖N (μ̃c
, �̃c)) − α(y(μc · x) − φxT �cx).

This is exactly (10) of Dredze et al. (2008). Following their derivation we get the optimal
solution, and manipulation yields the update rule

μc = μ̃c + αy�̃cx, (�c)−1 = (�̃c)−1 + 2αφxxT ,

where

α̂ = −(2φM + 1) + √
(2φM + 1)2 − 8φ(M − φV )

4φV
, (6)
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and

α = max(α̂,0).

7.2.1 
2 Distance

The question now remains: how should we update (μz,�z) so that the desired (updated)
combination distribution is achieved? A principled approach calls for a new objective to
determine how to distribute the update to the combination’s underlying parameters. We can
minimize the change in the base parameters subject to the constraint that they achieve the
desired combination. For the 
2 combination, this yields:

min
{(μz,�z)}z

∑

z∈Z

DKL(N (μz,�z)‖N (μ̃z
, �̃z))

s.t. ∀i:
∑

z∈Z

cz
i μ

z
i = μc

i = μ̃c
i + αy�̃c

i xi,

∑

z∈Z

cz
i �

z
i = �c

i = ((�̃c
i )

−1 + 2αφx2
i )

−1.

(7)

The Lagrangian is given by

N∑

i=1

[∑

z∈Z

1

2
(log(�̃z

i /�z
i ) + �z

i /�̃
z
i + (μz

i − μ̃z
i )

2/�̃z
i − 1)

−βi

(∑

z∈Z

cz
i μ

z
i − μ̃c

i − αy�̃c
i xi

)

− γi

(∑

z∈Z

cz
i �

z
i − ((�̃c

i )
−1 + 2αφx2

i )
−1

)]

. (8)

Taking the derivatives of the Lagrangian gives the update rules

μz
i = μ̃z

i + βi�̃
z
i c

z
i ,

(�z
i )

−1 = (�̃z
i )

−1 − 2γic
z
i .

Plugging into the constraints and solving gives
∑

z∈Z

cz
i (μ̃

z
i + βi�̃

z
i c

z
i ) = μ̃c

i + αy�̃c
i xi

⇒
∑

z∈Z

βic
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2
�̃z

i = αy�̃c
i xi

⇒ βi = αy�̃c
i xi

∑
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i
2
�̃z
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(9)

and
∑

z∈Z

cz
i ((�̃

z
i )

−1 − 2γic
z
i )

−1 = ((�̃c
i )

−1 + 2αφx2
i )

−1.

While we can now obtain a closed form solution for several parameters, γ still requires a line
search. Note that if cz

i = 1/M , we have βi = αyMxi and the update for μz
i is μ̃z

i + αy�̃z
i xi .

As in the previous section, we were unable to obtain an update form suitable for a line
search when using KL combination.
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Table 8 Results show average test error across 10 runs in a true online setting. Each dataset contains multiple
domains. The new objective (5) improves on the majority of the datasets compared with feature splitting. We
also list the best performing objective (1) for comparison

Spam Sentiment

Task A Task B Books DVD Books DVD All

Feature splitting 1.94 5.51 9.97 9.70 9.05 14.73

Equation (1): 
2 uniform 3.30 6.67 11.03 8.93 8.48 15.40

Equation (5): 
2 uniform 1.89 5.55 10.17 9.37 8.77 14.89

Equation (5): 
2 variance 2.12 5.72 8.93 8.73 12.37 14.36

Table 9 Results for the same tests as in Table 8 but run as a batch algorithm with 10 online training iterations

Spam Sentiment

Task A Task B Books DVD Books DVD All

Feature splitting 1.38 4.21 7.67 6.97 7.02 13.37

Equation (1): 
2 uniform 2.82 6.45 11.00 10.30 8.73 15.33

Equation (5): 
2 uniform 1.54 4.46 8.13 6.93 7.55 13.46

Equation (5): 
2 variance 1.43 4.52 9.13 9.50 12.60 13.53

7.2.2 Evaluation

We evaluated objective (5) solved by the secondary step (7). Results are shown in Table 8 for
the online and Table 9 for the batch setting. This new objective improves over the approach
from the previous section. Additionally, the results for sentiment All come close to the results
for a single classifier, indicating that this method effectively shifts learning to the shared
parameters. First computing an update and then distributing it to the parameters seems to
have an inherent regularization effect that reduces over-fitting seen in the previous algorithm.
Still, this MDR algorithm does not improve over the baseline on every dataset. We still desire
a closed form solution.

7.3 Averaged update for combined classier divergence

While the previous sections have explored two objectives that give different approaches to
our problem, we have yet to derive a closed form solution for either. Additionally, these
updates cannot be extended to KL combinations, which limits their ability to extend to dif-
ferent combination methods. Finally, these two objectives did not improve over the baselines
in every case.

The average performance of these methods may be related to the lack of a closed form
solution. Dredze et al. (2008) found that closed form solutions, even when they were ap-
proximations for the intended objective, performed better than exact solutions which were
optimized using inexact methods (e.g., line search). Additionally, they observed that the ex-
act diagonalization methods converged faster than the approximate methods, indicating that
the exact solution was over-fitting the data. These results favored the use of closed form
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solutions over inexact methods, even if the objective was an approximation to the intended
objective.

We face the same situation in our application. Solving the objectives outlined so far has
failed to field a closed form solution and the resulting methods were unable to consistently
improve over the baseline. Instead, we seek a similar solution to Dredze et al. (2008): we
simplify the objective to obtain a closed form solution. This result will increase the speed of
the algorithm and may improve the performance.

We begin our derivation of a closed form solution by returning to objective (5). We ob-
serve that when using the 
2 combination, the combination parameters are simple weighted
(normalized) sums of the base parameters. Before, we sought to minimize the change of
the combined parameters, which in turn minimizes the change in each of the underlying
parameters. The question is how to distribute responsibility for this change? Which set of
underlying parameters should change more and which less? Solving this problem turned
out to be difficult and was without a closed form solution. Instead, we propose to assign
equal responsibility for the update to each of the underlying parameters: they should change
equally. The result is that we make a simple averaged update to the underlying parameters.

To make this averaged update, we simply use the update presented in Dredze and Cram-
mer (2008):

μz
i = μ̃z

i + (μc
i − μ̃c

i )

= μ̃z
i + αy�̃c

i xi,

(�z
i )

−1 = (�̃z
i )

−1 + [(�c
i )

−1 − (�̃c
i )

−1]
= (�̃z

i )
−1 + 2αφx2

i .

(10)

However, by using α as defined in (6) we ensure that the responsibility for fulfilling the
constraint is spread across both sets of parameters. Additionally, we can follow the same
derivation for KL and obtain the same closed form solution, where μc

i and �c
i are obtained

using a KL combination. We simply plug the parameters resulting from this combination
into (10).

7.3.1 Evaluation

Given our previous observations, we expect the average update (10) to be less susceptible to
over-fitting and possible numerical estimation errors. Results for the average update using

2 and KL as well as uniform and variance weightings are shown in Table 10 for the online
setting and in Table 11 for the batch setting compared to the previous objective and baseline
methods. These updates improve when compared both with previous methods and baselines
in both batch and online settings. In each dataset the best results are obtained using one of
the approximation methods. Additionally, we observe that each average method does almost
as well as or better than the single classifier on the sentiment All dataset. Given a choice of
which algorithm to deploy, MDR has the advantage of being able to learn across domains
when domains differ and obtain similar results as a single classifier when all domains share
the same behaviors.

8 Learning in many domains

A strong motivator for learning across domains are settings with large numbers of domains
or users, where the aggregation of data has potential for improved methods. While we have
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Table 10 Results show average test error across 10 runs in the true online setting. Each dataset contains
multiple domains. The average update improves over solving an additional minimization problem for objec-
tive (5). Additionally, it improves on all datasets compared with the baselines

Spam Sentiment

Task A Task B Books DVD Books DVD All

Single 2.11 6.60 17.77 17.40 18.10 14.34

Separate 2.93 8.64 19.67 19.87 18.70 16.96

Feature splitting 1.94 5.51 9.97 9.70 9.05 14.73

Equation (1): 
2 uniform 3.30 6.67 11.03 8.93 8.48 15.40

Equation (5): 
2 uniform 1.89 5.55 10.17 9.37 8.77 14.89

Avg: 
2 uniform 1.61 5.16 6.63 7.97 8.60 14.20

Avg: 
2 variance 2.22 7.73 14.87 14.83 17.83 14.44

Avg: KL uniform 1.96 5.43 8.37 7.07 8.43 14.56

Avg: KL variance 1.89 5.32 16.77 17.00 18.03 13.79

Table 11 Results for the same tests as in Table 10 but run as a batch algorithm with 10 online training
iterations

Spam Sentiment

Task A Task B Books DVD Books DVD All

Single 1.54 5.09 17.87 17.43 18.15 13.76

Separate 1.90 7.07 19.73 20.30 18.95 16.06

Feature Splitting 1.38 4.21 7.67 6.97 7.02 13.37

Equation (1): 
2 uniform 2.82 6.45 11.00 10.30 8.73 15.33

Equation (5): 
2 uniform 1.54 4.46 8.13 6.93 7.55 13.46

Avg: 
2 uniform 1.37 4.86 5.97 6.13 6.35 12.97

Avg: 
2 variance 1.68 7.30 12.17 11.27 17.27 14.27

Avg: KL uniform 1.40 3.79 5.30 6.10 6.63 13.04

Avg: KL variance 1.58 3.97 13.33 13.33 16.92 13.16

so far considered settings with a small number of similar domains, we now extend our meth-
ods to a large number of domains. In doing so, we tackle two problems: learning divergent
behaviors common to different subsets of the domains and scaling our methods to large
numbers of domains. Consider a spam filter used by a large email provider, which filters
billions of emails for millions of users. Suppose that spammers control many accounts and
maliciously label spam as legitimate. Alternatively, subsets of users may share preferences.
Since behaviors are not consistent across domains, shared parameters cannot be learned.
Additionally, algorithms must scale to this setting, handling millions of users.

We begin by considering the common real-world problem of many divergent domains.
Behaviors may be common to multiple users, but are likely not common to all users, such
as the spam case above. The goal is to learn behaviors common to subsets of users with our
MDR framework. Our approach is to group domains by their behavior and then learn these
behaviors across the group. For example, discriminating spammer accounts from legitimate
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accounts would enable separate intra-group learning for each type. We learn such groups
and simultaneously model parameters for them by augmenting the MDR framework.

Instead of a single set of MDR parameters shared across all domains, we use k sets of
shared parameters, each shared across one of k learned groups. Behaviors common to a
sub-group can be learned by the corresponding shared parameters. If the mapping between
domains and groups is known beforehand, then we can treat these as k independent prob-
lems and use any of the objectives and updates from before. If there are many fewer shared
parameters than domains, we can expect to benefit from such multi-domain learning.

However, when there is no known grouping of domains, we must learn the groups as we
learn the model parameters. Intuitively, a domain should be mapped to a group with shared
(group) parameters that correctly classify the examples from that domain. Hence, a group
represents a collection of domains with similar behavior on the prediction task of interest.
A common technique for learning such a mapping is the Weighted Majority algorithm (Lit-
tlestone and Warmuth 1994), which weighs a mixture of experts (classifiers). In our setting,
an expert is a set of shared parameters and we seek the set of shared parameters that gives the
best predictions for a domain. However, since we require a hard assignment to a group rather
than a mixture, the algorithm reduces to picking the shared classifier with the fewest errors
(e) in predicting the domain. Thus, instead of maintaining an expert weight for each set of
shared parameters, we keep a count of the number of known mistakes made by each shared
classifier on each domain. For learning, the shared classifier with the fewest mistakes for a
domain is selected for an MDR update. (Classifier ties are broken randomly.) An outline of
the algorithm is given in Algorithm 1.

While we experimented with more complex techniques, this simple method worked well
in practice. When a new domain is added to the system, it appears to take fewer examples
to learn which shared classifier to employ than it does to learn a new domain-specific model
from scratch. Note that this approach adds a free parameter k. It can be set using develop-
ment data if needed; however, we observe that k can in practice be fixed to a large constant.
Since only a single shared classifier is updated on each round, the algorithm will favor se-
lecting a previously used group over a new one since it will have higher accuracy as long as

Algorithm 1 Multi-domain regularization across many domain
Input: φ ∈ [0,∞],K,D

Initialize:
∀k : μk

1 = 0, �k
1 = I

∀d : μd
1 = 0, �d

1 = I

∀k, d : ek
d = 0

for t = 1,2 . . . do
Receive example x t from domain d

Select group k = arg mink′ ek′
d

Create μc
t ,�

c
t from μk

t ,�
k
t (shared) and μd

t ,�
d
t (domain) using 
2 or KL

Output the prediction ŷt = sign(μc
t · x t )

Receive true label yt

for k′ = 1 . . .K do
ek′
d = ek′

d + I(yt (μ
k′
t · x t ) < 0)

end for
Compute update to μk

t ,�
k
t and μd

t ,�
d
t using (10)

end for
Output: Final {μk,�k}K

k=1 and {μd ,�d}D
d=1
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the domain is similar to previously observed data. Therefore, the algorithm can adaptively
use as many shared parameter sets as needed. This may not be optimal, but it is simple and
frequently effective.

8.1 Evaluation

To evaluate this approach, we created a large number of varying domains using our spam
and sentiment data.

– Spam. Six email domains were created by splitting each of the three task A users into
two domains. One domain remained unchanged and the other had its label flipped, rep-
resenting a malicious user. This yielded 400 train and 100 test emails for each of the six
resulting domains. The optimal learner would create two groups, one for the unchanged
labelings and the other for the malicious users.

– Sentiment. For sentiment, the book domain was split into three groups, each with a differ-
ent binary decision boundary: star ratings of 2, 3 or 4. Each of these resulting three groups
was split again into 8 groups, of which half then had their labels flipped. The result was
24 domains with varying decision boundaries and inverted labels. The same procedure
was repeated for DVD reviews; for a decision boundary of 3 stars, 6 groups were created
while decision boundaries of 2 and 4 stars were split into 3 groups each. One or two of the
domains from each set had their labels flipped. The result was 12 DVD domains. DVD
and Books together total 36 total domains with various decision boundaries, features, and
inverted decision functions. Each domain had 300 train and 100 test instances.

We made one additional modification that improved performance. In defining their multi-
task regularization objective, Evgeniou and Pontil (2004) include parameters λ1, λ2 to trade-
off between minimizing the norms of the shared parameters and task specific parameters.
The λ values effectively encode a belief about the degree to which parameters are shared
between tasks (in the same group). We added these hyperparameters to our averaged MDR
update (10), yielding the modified rules:

μk
i = μ̃k

i + λ1αy�̃c
i xi,

(�k
i )

−1 = (�̃k
i )

−1 + λ12αφx2
i ,

μd
i = μ̃d

i + λ2αy�̃c
i xi,

(�d
i )−1 = (�̃d

i )−1 + λ22αφx2
i .

(11)

For convenience, we can rewrite λ2 = 2 − 2λ1, where λ1 ∈ [0,1]. We then optimize the
single additional hyperparameter λ1 on a single randomized run along with φ.

Each experiment was repeated using 10-fold cross validation with one online training it-
eration for each of our two many-domain datasets. Experiments were repeated for increasing
settings of k. The results for the MDR averaged update (11) are shown in Fig. 1. For both
spam and sentiment data, adding additional shared parameters and simultaneously learning
groupings of domains significantly reduces error, with further reductions as k increases. The
end result is a 45% error reduction for spam and a 38% reduction for sentiment over the best
baseline. While each task has an optimal k (about 5 for spam, 2 for sentiment), larger values
still achieve comparable error, indicating the relative insensitivity of performance to the use
of large k values.

We note some ties between the proposed method and certain Bayesian learning ap-
proaches: we have essentially described a hierarchy of model parameters, albeit a shallow
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Fig. 1 Test error over 10 randomized runs for learning across many domains—spam (left, 6 domains) and
sentiment (right, 36 domains)—with MDR average update 11 using k shared classifiers. Increasing k im-
proves performance as otherwise conflicting behaviors can be shared across domains. Note that as k increases,
performance changes little, indicating that k need not be optimized but instead set to a large constant

hierarchy of depth 2. Observing that k can be treated as “large” also suggests non-parametric
learning, which allows a model to use a potentially unlimited number of parameters, depend-
ing on the data. Recent work by Daumé (2009) introduces a hierarchical Bayesian model for
multi-task learning with applications to multi-domain learning. It is possible that our meth-
ods and these types of models can be combined to learn arbitrary hierarchies for complex
multi-domain data. However, a significant challenge in this combination is the creation of
a hierarchy in an online setting, where models predictions are required as the hierarchy is
learned from a single instance at a time. This type of combination remains an open research
area.

8.2 Scaling to many domains

While adding parameters clearly helps for many domains, it may be impractical to keep
domain-specific classifiers for thousands or millions of domains. In this case, we can elimi-
nate the domain-specific classifiers and rely on the k shared classifiers alone, but still learn-
ing the groupind of domains. We compare this approach to the best result from MDR above,
again varying k. Figure 2 shows that losing domain-specific parameters hurts performance,
but is still an improvement over baseline methods. Additionally, we can expect better per-
formance as the number of similar domains increases. This may be an attractive alternative
to keeping a very large number of parameters.

9 Related work

Multi-domain learning intersects two areas of research: domain adaptation and multi-task
learning. We first begin with a review of domain adaptation in NLP tasks and then review
some related multi-task learning literature.

9.1 Domain adaptation and transfer learning

Changing domains presents a difficult problem for NLP tasks since systems rely on a fa-
miliar vocabulary (features) for learning. Changing domains means both introducing new
signals and removing reliable sources of information.
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Fig. 2 Test error over 10 randomized runs for learning across many domains—spam (left, 6 domains) and
sentiment (right, 36 domains)—with MDR average update 11 using k shared classifiers and no domain spe-
cific parameters. As before, increasing k improves performance and that at some point performance changes
little

Several theoretical analyses have considered the domain adaptation problem. Ben-David
et al. (2006) formalize the problem by defining two sources of adaptation error. First, feature
distributions differ between two domains, meaning that test instances are unlikely to look
like training examples. Since most NLP tasks use lexical items as features, this problem
can be especially difficult. In general, this problem is addressed through the use of unla-
beled target data since feature distributions can be measured and aligned without annotated
examples. Second, decision functions differ between domains; some instance are labeled
differently depending on the domain. Correcting this error relies on knowledge of the label-
ing function, which can only be gleaned from labeled target examples. Dredze et al. (2007)
showed how domain adaptation for parsing is difficult when annotation guidelines differ for
different domains. Blitzer et al. (2007a) prove bounds for both settings demonstrating how
data from multiple domains can be mixed for learning on the target domain. Also of note
is recent theoretical work on learning from multiple data sources (Mansour et al. 2009).
This analysis shows the importance of using domain combinations that are sensitive to dis-
tributions. Our multi-domain algorithms take a similar approach since our combinations
are sensitive to the feature distributions in each domain: more frequent features have lower
variance and contribute more to the combined parameters.

In addition to the theoretical analyses, there has been significant empirical work on al-
gorithms for domain adaptation and transfer learning. Several approaches rely on unlabeled
data for overcoming feature distribution differences between domains. This approach can
be thought of as semi-supervised learning, in which a learner trained on a small amount of
(source) labeled data is augmented with a large amount of unlabeled (target) data. Following
this theme, several semi-supervised techniques have been used for adaptation. Blitzer et al.
(2006) introduced structural correspondence learning, which is based on a semi-supervised
learning algorithm (Ando and Zhang 2005) to align features from two domains based on
common behaviors. Blitzer et al. (2007b) further showed significant improvements in sen-
timent classification domain adaptation. Additional improvements were shown when small
amounts of target labeled data were available for learning. Others have learned represen-
tations for adaptation, such as Satpal and Sarawagi (2007) who create representations that
maximize learning accuracy and minimize domain differences, which follows a theoretical
result obtained by Ben-David et al. (2006). Do and Ng (2006) learn a parameter function, of
which one benefit is better transfer between domains.
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Another manner in which representations can aid adaptation is through careful structur-
ing of features. For example, NLP applications make frequent use of feature conjunctions
and back-off features, creating a natural feature hierarchy. Features higher in the hierarchy
are more general and can appear in more domains. Arnold et al. (2008) create a learning
method that favors such features to yield more generalizable models. Alternatively, Dai et
al. (2009) align features in each domain so that learning can spread from features observed
in labeled data to new target features. Rather than rely on aligning or structuring represen-
tations, useful feature statistics can be learned from unlabeled data. Second order features,
which require covariance estimation, model feature interactions useful for learning. Raina
et al. (2006) obtain these statistics from data from related problems. Similarly, self taught
learning creates representations from unlabeled data sampled without domain restrictions
(Raina et al. 2007). These representations may collapse similar domains, enabling adap-
tation. Another approach relying on unlabeled target domain data is instance weighting,
whereby instances in source domains are given more weight during discriminative training
when they closely match observed feature distributions in the target domain (Jiang and Zhai
2007a, 2007b).

A related setting, transfer learning leverages out of domain data to improve learning
on in domain examples since out of domain data often indicates important features and
appropriate parameter values. A common approach is to regularize a target problem based
on out of domain learning. Chelba and Acero (2004) use a source domain classifier as a
regularizer for a target domain with limited data. Marx et al. (2008) take a similar approach
and define several priors for maximum entropy learning using data from related domains or
users. Alternatively, Dai et al. (2007) use a generative model to learn a supervised classifier,
and then employ an EM algorithm on unlabeled data to re-estimate target domain weights.
Daumé and Marcu (2006) defines a graphical mixture model to learn differences between
domains. Our approach can be considered similar to these methods, in that we rely on a
shared set of parameters to transfer beliefs about parameter values across domains. Our
approach can also be viewed as regularization following Dekel et al. (2006), who define
a multi-domain online learning algorithm that regularizes updates using multiple domains.
However, their algorithm assumes an instance from each domain for every update.

Some have modeled transfer as a covariance shift problem, which has been widely stud-
ied in machine learning. Covariance shift assumes that data from both domains have the
same decision function but domain data points have been shifted. Bickel et al. (2007) model
this shift for adaptation by learning a kernel logistic regression classifier. Similarly, Bickel
et al. (2009) assume a change in prior over examples and derive a procedure for resampling
weights that match the available examples to ones in the target domain. Changes in priors
affect NLP tasks like word sense disambiguation, which relies on a prior over word senses
for each domain. Re-estimating these priors for each domain improves disambiguation after
adaptation (Chan and Ng 2006).

9.2 Multi-task learning

Most transfer learning algorithms consider a one time transfer between problems, whereby
a system is adapted to a new domain. However, in this paper we consider multi-domain
learning, which learns across many domains at the same time and transfer happens contin-
uously throughout learning. A similar setting is that of multi-task learning (Caruana 1997),
also known as inductive transfer. In multi-task learning, many related tasks are learned at
once since information relevant to one task may be relevant to other related tasks. Like
multi-domain learning, multi-task learning can improve accuracy on all related tasks. The
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two settings are related: multi-task learning has many tasks and a single dataset and multi-
domain learning has a single task and many datasets.

As discussed above, our algorithm is based on Regularized Multi-Task Learning (Evge-
niou and Pontil 2004). In particular, Daumé (2007) considered a special case of this algo-
rithm and applied it in a multi-domain learning scenario, showing results comparable to
many of the more complex techniques considered above. Recent work has generalized this
approach to a hierarchy of tasks, which is learned using Bayesian methods (Daumé 2009).
Dekel et al. (2006) gave a similar online approach but did not use shared parameters, in-
stead assuming that instances from each domain were provided on each round. Others have
taken a more direct approach to finding useful features, such as feature selection based on
data from multiple related tasks (Obozinski et al. 2006). Additionally, some multi-task work
clusters tasks by similarity (Bakker and Heskes 2003). In particular, Thrun and O’Sullivan
(1998) first group tasks and then learning across tasks within a grouping. We take a simi-
lar approach for learning on many disparate domains. We cluster our domains into groups
(online) and share parameters between co-clustered domains. A related idea is presented
by Abernethy et al. (2007), who examine prediction with expert advice across many online
problems at once. The intuition is that a quality expert is good across many problems. This
is similar to our assumption about features across multiple domains; a good feature can be
predictive across multiple related domains.

10 Conclusion

We have explored several multi-domain learning settings using CW classifiers and a com-
bination methods. For domain adaptation, our approach creates a better classifier for a new
target domain than selecting a random source classifier a priori. For learning across do-
mains, we have considered several formulations for combining domain specific and shared
parameters based on confidence sensitive combinations. Our approach reduces error on sev-
eral datasets by sharing learned information. Many practical problems may have subgroups
of domains which share common behaviors but not share behaviors across all domains.
We extended our approach to handle this disparate domain setting by increasing the num-
ber of shared parameters. Furthermore, we have shown how the same approach can be
scaled to many domains with a small performance reduction, an important consideration
for large scale learning settings. These scenarios are all realistic for NLP systems in the
wild.

This work raises some new questions about multi-domain learning. First, when learning
on a large number of disparate domains, can hierarchical clustering or a known hierarchi-
cal structure be used to better select shared parameters? Our algorithms are not restricted
to two sets of parameters per update and perhaps knowledge can be shared in a hierar-
chical structure. Second, how can prior knowledge about domain similarity be included
in the combination methods? We include two simple methods for weighting parameters:
uniform and variance. Additional methods can be based on observed similarities on unla-
beled data or prior knowledge. Third, we considered cases where domains could be clus-
tered into sub-groups in which common behaviors are learned. Our clustering, and those
considered by others (Thrun and O’Sullivan 1998; Bakker and Heskes 2003) assume a
clustering of domains. However, domains may have certain classes of features whose be-
haviors could form overlapping subgroups. We plan to explore these scenarios in future
work.
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