
Maximizing Induced Cardinality Under a
Determinantal Point Process

Jennifer Gillenwater
Google Research NYC
jengi@google.com

Alex Kulesza
Google Reserach NYC
kulesza@google.com

Zelda Mariet
Massachusetts Institute of Technology

zelda@csail.mit.edu

Sergei Vassilvitskii
Google Research NYC
sergeiv@google.com

Abstract

Determinantal point processes (DPPs) are well-suited to recommender systems
where the goal is to generate collections of diverse, high-quality items. In the
existing literature this is usually formulated as finding the mode of the DPP (the
so-called MAP set). However, the MAP objective inherently assumes that the DPP
models “optimal” recommendation sets, and yet obtaining such a DPP is nontrivial
when there is no ready source of example optimal sets. In this paper we advocate an
alternative framework for applying DPPs to recommender systems. Our approach
assumes that the DPP simply models user engagements with recommended items,
which is more consistent with how DPPs for recommender systems are typically
trained. With this assumption, we are able to formulate a metric that measures
the expected number of items that a user will engage with. We formalize this
optimization of this metric as the Maximum Induced Cardinality (MIC) problem.
Although the MIC objective is not submodular, we show that it can be approximated
by a submodular function, and that empirically it is well-optimized by a greedy
algorithm.

1 Introduction

Diversity is frequently advantageous for recommender systems. It can compensate for uncertainty,
for example, when a search engine can’t be sure which type of “java” a user intended and hence
returns results spanning coffee, programming languages, and Indonesia. But diversity can also be an
inherently desirable property, reflecting the way that users engage with a set of results. A news feed,
for example, might include stories on politics, health, sports, and arts—even when the important
news of the day is all political—simply because users enjoy reading a variety of articles. This is one
of the reasons why diversity has been a longstanding focus for research on information retrieval and
recommender systems [Smyth and McClave, 2001, Herlocker et al., 2004, Ziegler et al., 2005, Hurley
and Zhang, 2011].

The determinantal point process (DPP), a probabilistic model of subset selection that prefers diverse
sets, is a natural fit for these kinds of applications. However, while DPPs offer efficient algorithms for
probabilistic operations like marginalization, conditioning, and sampling, in practice we often need
to select a single “best” set, and this can be more challenging. To date, most research in this direction
has focused on approximation algorithms for finding the set with the highest probability, sometimes
called the maximum a posteriori (MAP) set [Gillenwater et al., 2012, Kathuria and Deshpande,
2017, Zhang and Ou, 2016, Nikolov and Singh, 2016]. In particular, the MAP objective has recently

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

been applied to recommender systems with some success [Chen et al., 2017, Wilhelm et al., 2018].
However, we argue that, for most recommender systems, the MAP objective is not the best fit.

As an alternative, in this paper we propose and analyze induced cardinality (IC), which directly
measures the expected number of items that the user will engage with. This is a natural objective for
any recommender system where engagements (e.g., clicks) are an important metric. We investigate
basic properties of the IC objective for DPPs, finding that it is fractionally subadditive but not
submodular, and that, as with MAP, it is NP-hard to find the Maximum Induced Cardinality (MIC)
set. Despite this negative result, we are able to establish a data-dependent bound showing that the
IC objective can often be well-approximated by a submodular function, which offers corresponding
greedy optimization guarantees for the MIC problem. We also show that, empirically, a greedy
algorithm typically performs very well.

In the remainder of this section we cover background material on DPPs and discuss why MIC is
likely a better fit for recommendation systems than MAP. We proceed in Section 2 to study basic
properties of the IC objective, and then in Section 3 we consider the implications of those properties
for the MIC optimization problem. Finally, in Section 4 we present empirical studies of several
optimization algorithms.

1.1 Background

Given an n × n positive semi-definite (PSD) kernel matrix L, the associated determinantal point
process assigns to any subset S of [n] = {1, 2, . . . , n} the probability PL(S) = det(LS)

det(L+I) , where
LS denotes the restriction of L to the row and column indices found in S. Note that, because∑
S⊆[n] det(LS) = det(L+ I), the DPP defined above is a properly normalized probability distribu-

tion over all 2n subsets of items drawn from the ground set [n].

Intuition. If we think of the diagonal kernel entry Lii as a measurement of the quality of item i, then
it is not difficult to see that PL assigns higher probabilities to sets with high-quality items. If we think
of the off-diagonal entry Lij as a scaled measurement of the similarity between items i and j, then
properties of determinants can be used to show that PL assigns higher probabilities to sets whose
items are less similar—i.e., more diverse. Thus a DPP prefers sets of items that are both high-quality
and diverse. For more background on DPPs, see Kulesza and Taskar [2012].

Given a training collection consisting of subsets of [n], the general DPP learning problem is to find a
kernel L such that PL best replicates the empirical distribution of the subsets in the training collection.
For instance, this can be done using maximum likelihood estimation (MLE), for which a variety of
optimization techniques have been developed [Kulesza and Taskar, 2011, Gillenwater et al., 2014,
Mariet and Sra, 2015, Dupuy and Bach, 2018, Gartrell et al., 2017]. In this work, we do not attempt
to improve upon these learning techniques. Rather, we assume that one of these techniques has been
applied to learn a DPP kernel L for a recommendation task, and we focus on how to best use that
kernel.

1.2 Recommender System Example

Suppose we want to recommend k items from a large set denoted by [n], where n� k. As training
data, we have r examples of previously recommended k-sets [S1, S2, . . . , Sr] and the associated user
engagements with those sets [E1, E2, . . . , Er]. (That is, each Ei ⊆ Si is the set of items that a user
actually clicked on, watched, read, etc.)

To learn a DPP for this problem, assume we have a parameterized kernel L(θ), where θ is the
parameter to be learned. (Concretely, you might imagine that each item i has an associated feature
vector bi ∈ Rd, and we define the kernel as something like Lij(θ) = b>i diag(θ)bj , where θ ∈ Rd
and diag(θ) denotes the d× d matrix with θ on the diagonal. In reality, of course, the kernel may
also depend on context such as a query string or the user’s history.)

Let L(i) be a shorthand for LSi
, the |Si| × |Si| kernel matrix over the set Si. A natural learning

problem is to find the value of θ that maximizes the log-likelihood of the interaction sets {Ei} given
the recommendation sets {Si}:

max
θ

r∑
i=1

log
(
PL(i)(θ)(Ei)

)
= max

θ

r∑
i=1

log det
(
L(i)(θ)Ei

)
− log det

(
L(i)(θ) + I

)
. (1)

2

Optimization techniques from the references in the previous section can be applied to learn a good θ
under this learning objective.

At test time, we want to generate new recommendations using a DPP with kernel parameterized by
this fixed θ. Previous work has addressed the problem of generating a recommendation set of size k
by (approximately) solving the following optimization problem:

Problem 1 (Maximum a posteriori (MAP)).

max
S:|S|=k

PL(θ)(S) = max
S:|S|=k

det(LS(θ)) (2)

At first glance, this MAP objective seems quite natural: it seeks the most likely set under the
probabilities defined by the DPP. However, it has subtle semantics. Recall that at training time we
learned θ by maximizing the likelihood of the items that were engaged with, not the likelihood of
all items that were recommended. That is, we maximized the probability of {Ei}, not {Si}. (It
wouldn’t make any sense to maximize the likelihood of {Si}, as this would result in learning a DPP
that simply mimics whatever recommender system was used in generating {Si} in the first place.)
Thus, the learned DPP models user engagements, not recommended sets. Formally, this means that
the MAP objective PL(S) = det(LS)

det(L+I) represents the probability that a user, when presented with a
recommendation consisting of all of the available items, will engage with every item in S.

In practice, of course, it is the set S that gets shown to the user, who then engages with some subset
of S. Hence, the MAP objective does not have the correct semantics, instead introducing a mismatch
between train and test time.

1.3 Maximum Induced Cardinality

As an alternative to MAP, we propose Maximum Induced Cardinality (MIC), which appeals to a
specific notion of success that is natural for many recommender systems: maximizing the number of
recommended items that the user engages with. Whereas with the MAP objective the ground set is
[n] and the modeled variable is the set S ⊆ [n] of recommended items, here the ground set is S and
the modeled variable is the set E ⊆ S of recommended items that the user eventually engages with:

PLS
(E) =

det(LE)

det(LS + I)
. (3)

This matches the learning setup above. The MIC problem, which aims to maximize the expected
cardinality of the induced engagement set E, can be formalized as follows.

Problem 2 (Maximum Induced Cardinality (MIC)).

max
S:|S|=k

f(S), f(S) ≡ EE∼PLS
[|E|] . (4)

While f(S) is naı̈vely an exponential sum over all 2k subsets of S, it can be simplified:

f(S) =
∑
E⊆S

|E|PLS
(E) =

∑
E⊆S

|E| det(LE)

det(LS + I)
= Tr(I − (LS + I)−1) . (5)

The final equality follows from Equations 15 and 34 in Kulesza and Taskar [2012]. In this form, the
time required to compute f(S) is dominated by the inverse, which requires O(k3) time.

1.4 MAP vs MIC

As discussed above, the semantics of MIC are more appropriate for recommender systems than those
of MAP. However, the choice of objective can also have immediate, practical consequences. While
both MIC and MAP can produce relatively diverse sets in general, when the DPP kernel is low-rank
MAP can fail dramatically. This occurs in practice, for instance, if there are a small number of
features relative to the size of the desired recommendation set.

To illustrate how MAP fails and why MIC does not, let’s consider a toy example (see Fig-
ure 1). Suppose that we are in a movie recommendation context, and each dot in Figure 1

3

represents one movie, with the size of the dot proportional to movie quality. Suppose fur-
ther that the two dimensions in Figure 1 are star ratings and box office revenue. Then
the three clusters correspond to three types of movies: 1. “Artistic gems” characterized by
high ratings but low revenue; 2. “Oscar winners” with high ratings and high revenue; and
3. “Summer blockbusters”, which have low critical ratings but high revenue. Each of these
categories could be desirable, depending on the user’s mood, so it might be advantageous

Figure 1: Example where MIC
(+) is more diverse than MAP (x).

to recommend one movie from each group. However, when asked
to select a set of size k = 3, the MAP objective has equal value
(zero) for all size-three sets —with only two features, the rank
of the DPP kernel is 2, and hence the determinant of any 3 × 3
matrix will be zero. Hence MAP cannot distinguish among any
three-item sets. The MIC objective on the other hand continues
to provide useful differentiation even when the number of items
requested exceeds the rank of the kernel matrix. It will select
one item from each cluster (e.g., the + items), whereas MAP will
select a random size-3 set (e.g., the x items).

2 Properties of Induced Cardinality

We begin by presenting key properties of the IC objective. We
show that while f(S) is monotone (Theorem 1), it is not sub-
modular (Example 1.1), but is fractionally subadditive (Theorem 2). These results will inform the
subsequent discussion of optimization techniques in Section 3.

Theorem 1. f(S) is monotone increasing.

Showing that f(S) is monotone is a straightforward application of the Cauchy eigenvalue interlacing
theorem. The proof can be found in the supplement.

We can also show that f(S) is not submodular. Formally, recall that a set function g is submodular if
for all sets S ⊆ T ⊆ [n] and all i /∈ T :

g(S ∪ {i})− g(S) ≥ g(T ∪ {i})− g(T) . (6)

To show non-submodularity, it suffices to create a single counterexample violating this property.

Example 1.1. Consider n = 3 items, and define a matrix F with one row of features per item:

F =

 2 0
2 0√
2
√
2

 , L = FF> =

 4 4 2
√
2

4 4 2
√
2

2
√
2 2
√
2 4

Let S = {1}, T = {1, 2}, and i = 3; then it is easy to verify that the inequality required for
submodularity, Equation 6, does not hold.

To give some intuition, recall the original definition of f(Z) as the expected set size underPLZ
. When

Z = S = {1}, PLZ
is split between the empty set and the singleton {1}. When Z = T = {1, 2}, the

probability is still only split between the empty set and singletons, because items 1 and 2 are identical
and so det(LT) = 0. Hence, f(T) is not much larger than f(S). However, when Z = T ∪ {i}, both
{1, 3} and {2, 3} have substantial probability mass, whereas S ∪ {i} only supports a single size-2
subset, {1, 3}. Hence f(T ∪ {i}) ends up being substantially larger than f(S ∪ {i}).
It is also possible to construct examples showing that Equation 6 does not hold even approximately.

Example 1.2. Define the feature matrix

F =

[
x x
x x+ 1
1 1

]

for a given value x, and let L = FF> as before. Then, for S = {1}, T = {1, 2}, and i = 3, one can
verify that f(T∪{i})−f(T)

f(S∪{i})−f(S) grows without bound as x→∞.

4

We note that there does exist a restricted setting of L where f(S) is provably submodular. Recall
that a real matrix L is an M-matrix if all of its off-diagonal entries are non-positive, and all of
its eigenvalues are non-negative. Theorem 3 of Friedland and Gaubert [2013] shows that f(S) is
submodular whenever the kernel matrix L is an M-matrix. In practice, for many applications, the
off-diagonal entries of the kernel matrix are naturally positive, and in these cases, the kernel is not an
M-matrix. In Section 4 we consider algorithms that first project to the kernel to an M-matrix and then
optimize it using the standard greedy submodular maximization algorithm.

While f(S) is not submodular, it is (fractionally) subadditive. Recall that a set function g on [n] is:

• Subadditive if for all sets S, T ⊆ [n]: g(S ∪ T) ≤ g(S) + g(T) .
• Fractionally subadditive if g(S) ≤

∑
i αig(Ti) for all Ti ⊆ [n] and all constants 0 ≤

αi ≤ 1 such that
∑
i:j∈Ti

αi ≥ 1 for all j ∈ S. Note that a fractionally subadditive function
is also subadditive.

Theorem 2. f(S) is fractionally subadditive.

The proof can be found in the supplement.

3 Optimizing Induced Cardinality

In the previous section we showed that f(S) is monotone and subadditive, but not submodular. In
contrast to monotone submodular functions, for which the greedy algorithm [Nemhauser et al., 1978]
is guaranteed to give a (1− 1/e)-approximation, subadditive functions cannot be approximated by
general black box methods [Feige, 2009]. Moreover, we have the following result:
Theorem 3. MIC is NP-hard.

The proof can be found in the supplement. Despite its NP-hardness, however, we will develop an
approximation algorithm for MIC. We begin by giving a different representation of the objective
function, expressing it as an infinite geometric series. We show that the first few terms of the series
are submodular, and can thus be optimized using greedy methods. By bounding the contribution of
the remaining terms we can then prove a data-dependent approximation bound.

Geometric Series Representation. Recall from Equation 5 that f(S) = |S| − Tr((LS + I)−1).
Denote the largest eigenvalue of L by λn(L). Then, define the PSD matrix B = (m− 1)I − L, with
m = λn(L) + 1. (The smallest eigenvalue of B will be zero, and the largest will be at most m− 1.)
Re-arranging, we have: L+ I = mI −B. Since λn(B/m) < 1, we can apply the Neumann series
representation [Suhubi, 2003, page 390] to this expression:

m(L+ I)−1 =

(
I − 1

m
B

)−1
=

∞∑
i=0

Bi

mi
. (7)

Thus, we can re-write f(S) as an infinite sum of traces of matrix powers:

f(S) = |S| −
∞∑
i=0

Tr(BiS)

mi+1
. (8)

Note that BiS here means (BS)i and not (Bi)S .

Submodularity. The first two terms in this sum are modular functions:

Tr(B0
S)

m
=
|S|
m

and
Tr(BS)

m2
=
∑
i∈S

Bii
m2

. (9)

Corollary 2 in Friedland and Gaubert [2013] states that the third term, Tr(B2
S)

m3 , is a supermodular
function. Thus, the following function, consisting of the first few terms from the geometric series
representation of f , is submodular:

f̂(S) = |S| − |S|
m
− Tr(BS)

m2
− Tr(B2

S)

m3
. (10)

5

Monotonicity. This function is also monotone. This is easiest to see by expressing it in terms of f .
Let h represent the difference between f̂ and f :

h(S) =

∞∑
i=3

Tr(BiS)

mi+1
. (11)

Then f̂(S) = f(S) + h(S). Since f is monotone, it remains to show that h is monotone. Consider
sets S, T such that S ⊆ T . Then, by the Cauchy eigenvalue interlacing theorem, the j-th eigenvalue
of BS is smaller than the (j + |T | − |S|)-th eigenvalue of BT . Hence, Tr(BS) ≤ Tr(BT), and
similarly for all higher powers of these matrices. Thus, h is monotone and so is f̂ .

We propose to maximize f̂ using the standard greedy algorithm [Nemhauser et al., 1978], which we
will refer to as GREEDY. Since f̂ is monotone submodular, this gives a (1− 1/e) approximation; that
is, let Ŝ be the solution returned by GREEDY, and let Ŝ∗ be the true maximizer of f̂ . Then:

f̂(Ŝ) ≥ (1− 1/e)f̂(Ŝ∗) . (12)

Tail Analysis. To show that Ŝ is a good approximation for MIC, it remains to bound the dif-
ference between f̂ and f . Recall that h represents this difference. Let BS = QAQ−1 be the
eigendecomposition of the PSD matrix BS . Note that BSBS = QAQ−1QAQ−1 = QA2Q−1,
and hence BiS = QAiQ−1 is also a PSD matrix. This means that h is non-negative. Thus,
f(S) = f̂(S)− h(S) ≤ f̂(S).

We will show (Theorem 4) that f̂ is also bounded by f from above in that there exists some constant
0 < c ≤ 1 such that cf̂(S) ≤ f(S). Combining these inequalities with Equation 12:

f(Ŝ) ≥ cf̂(Ŝ) ≥ c(1− 1/e)f̂(Ŝ∗) ≥ c(1− 1/e)f̂(S∗) ≥ c(1− 1/e)f(S∗) .

Thus, the final approximation ratio achieved by this procedure is c(1− 1/e). It remains to prove a
bound on c. We start by proving a theorem that bounds c for a particular set S, later extending it to a
uniform result as a corollary.

Theorem 4. The ratio of f (Equation 8) to f̂ (Equation 10) is bounded from below:

f(S)

f̂(S)
≥ 1− mr(BS , 3)

(m− 1)k − r(BS , 1)− r(BS , 2)
, where r(BS , `) =

|S|∑
j=1

(
λj(BS)

m

)`
, (13)

k = |S|, m = λn(L) + 1, and B = (m− 1)I − L.

Proof. The ratio of interest is f(S)

f̂(S)
= 1− h(S)

f̂(S)
. We lower-bound it by substituting an upper bound

for h.

h(S) =

∞∑
i=3

Tr(BiS)

mi+1
=

∞∑
i=3

∑k
j=1 λj(BS)

i

mi+1
=

1

m

k∑
j=1

∞∑
i=3

(
λj(BS)

m

)i
(14)

=
1

m

k∑
j=1

(
λj(BS)

m

)3
(

1

1− λj(BS)
m

)
≤ r(BS , 3) , (15)

(16)

where the last equality follows from the geometric series summation formula, and the last inequality
follows by definition of r and the fact that λj(BS) ≤ m− 1.

Noting that:

f̂(S) = k − k

m
− Tr(BS)

m2
− Tr(B2

S)

m3
=

(
1− 1

m

)
k − 1

m
[r(BS , 1) + r(BS , 2)] , (17)

we can now substitute the upper bound on h to complete the proof.

6

Corollary 4.1. For all sets S of size k,

f(S)

f̂(S)
≥ 1− mr′(B, k, 3)

(m− 1)k − r′(B, k, 1)− r′(B, k, 2)
, with r′(B, k, `) =

n∑
j=n−k+1

(
λj(B)

m

)`
.

(18)

The proof of the corollary can be found in the supplement. The value of c given by Corollary 4.1
is best (closest to 1) for matrices B where the eigenvalues are small, which will be the case when
eigenvalues of L are close to λn(L). In the extreme case where L is approximately a multiple of the
identity matrix, B and thus r′(B, k, `) will be close to zero. In this case, c ≈ 1.

The value of c is worst when the eigenvalues of B decay slowly, which means that most eigenvalues
of L are small compared to λn(L). In the extreme case where all of the top-k eigenvalues of B are
identical and equal to m− 1, the expression for c is :

c = 1− (m− 1)2

m2 −m− 1
=

m

(m− 1)2 +m
≈ 1

m
, (19)

and thus the approximation is less meaningful. However, in contrast to the MAP objective, this
degradation of approximation is gradual, and catastrophic failure such as that seen in Figure 1 is
completely avoided.

4 Experiments

As described in Section 1, MIC’s semantics are a better fit for DPP-based recommendation systems,
whereas the traditional application of MAP leads to a mismatch between how the DPP is learned and
how it is applied. Properly comparing MIC to MAP on real data requires a live system where we
can observe users engaging with different sets of recommendations; a static dataset is not likely to
be sufficient since the number of possible recommendation sets is combinatorially large. (See the
work by Swaminathan et al. [2017] for a longer discussion of the challenges here.) In this work, we
focus on evaluating algorithms that optimize the MIC objective, specifically evaluating the GREEDY
algorithm in three settings: 1) when optimizing f(S), 2) when optimizing f(S) after projecting
to the space of M-matrices (see Section 4.1 for details), and 3) when optimizing the submodular
approximation f̂(S). We call these methods and their results GIC, PIC, and SIC respectively.

4.1 Projecting to the set of M -matrices

We tried several methods for projecting to the set of (real, symmetric) PSD M-matrices for the PIC
method. We found that flipping the signs of any positive off-diagonal elements, then projecting to
the PSD cone by truncating negative eigenvalues at zero worked best. If the PSD projection resulted
in any positive off-diagonal elements, we simply iterated the process of flipping their signs and
projecting to the PSD cone until the resulting matrix satisfied all requirements.

Note that the sign-flipping step computes a projection onto the set of Z-matrices (under the Frobenius
norm). Since the set of Z-matrices is closed and convex, as is the set of PSD matrices, this means
that the iterative process described above is guaranteed to converge. (Though it will not necessarily
converge to the projection onto the intersection of the two convex sets.)

4.2 Runtime Analysis

GIC: The definition of f(S) in Equation 5 implies that in iteration i of GREEDY we need to compute
an i× i matrix inverse to evaluate the objective on each of the remaining items. Rather than doing
this directly, requiring time O(nk4), we can use incremental inverse updates Hager [1989]. This
reduces the runtime of GREEDY by a factor of k to O(nk3). (Note that PIC’s runtime is identical,
ignoring the initial step of projecting to the space of M-matrices.)

SIC: At first glance, f̂(S) requires squaring an i× i matrix for each item (Equation 10). This too can
be substantially improved by taking advantage of the fact that Tr(BSBS) =

∑
s1∈S

∑
s2∈S b

2
s1s2 .

Evaluating a prospective point simply requires updating this sum with i new terms. This reduces the
naı̈ve runtime of GREEDY by a factor of k2 to O(nk2), making SIC a factor of k faster than GIC.

7

(a) Average runtimes from 100 trials
with n = 500.

(b) Average eigenvalues from 100
trials with n = 200. The cluster ker-
nel uses 50 clusters, and the Lapla-
cian kernel uses p = 0.2.

(c) MIC vs GIC. Lines represent
the average value of the ratio 100 ·
f(GIC)/f(MIC) from 1000 trials
with n = 12.

(d) GIC vs PIC and SIC for three types of kernel matrices. From left to right, the
results are for Wishart matrices, cluster matrices, and Laplacian matrices. Lines
represent the average value of the ratio f(PIC)/f(GIC) or f(SIC)/f(GIC)
from 100 trials with n = 200.

(e) Average ratio of f to the
SIC objective f̂ , evaluated
on the GREEDY result for f̂ .

Figure 2: Experimental results

Figure 2a shows the runtimes for GIC and SIC. For n = 500 and k = 250, SIC runs about 18 times
faster.

4.3 Approximation Quality

We ran experiments with three types of kernel matrices:

• Wishart matrix: For each item, draw a feature vector from an n-dimensional zero-mean
Gaussian. Stack the feature vectors into a matrix F , and set L to FF>.

• Cluster matrix: Divide items evenly into k clusters, and sample an n-dimensional mean
fromN (0, 1) for each cluster. Draw each item’s feature vector fromN (µ, 1), where µ is the
corresponding cluster mean. Stack the feature vectors into a matrix F , and set L to FF>.

• Graph Laplacian: Generate an n-node random graph using the Erdos-Renyi random graph
model with edge existence probability p. Compute the graph Laplacian matrix from the
degree matrix, D, and the adjacency matrix, A: L = D −A.

As Figure 2b shows, each of these three types of matrices has a distinct shape to its spectrum. The
Wishart grows rapidly but smoothly. The cluster matrix also has rapid, smooth growth for k of its
eigenvalues (one per cluster), but has value zero for all other eigenvalues. The Laplacian has a smooth,
nearly linear growth, the slope of which generally increases with p.

4.3.1 Comparison to MIC

Although GIC does not, in general, have any approximation guarantees, empirically we found that it
was quite effective. In Figure 2c we plot the ratio of the GREEDY solution, GIC, to the optimum,
MIC (for small n where it is possible to compute MIC by brute force). GIC does best on the
Laplacian matrices (edge existence parameter is fixed at p = 0.2), and slightly worse on the other
two matrix types. The success of GIC on the Laplacian may be partly due to the fact that Laplacians
are M-matrices, and, as mentioned in Section 2, f(S) is submodular in this case. The performance
on the Wishart and cluster kernels is not quite as good, but GIC still achieves more than 99% of the
maximum possible value in both cases.

8

Note that it is only possible to compute MIC for relatively small n, since it requires an exhaustive
search of the space of all

(
n
k

)
possible size-k subsets. Thus, in all subsequent experiments we use the

GIC solution as the baseline for comparing with PIC and SIC.

4.3.2 Comparison to PIC and SIC

In general, the M-matrix projection, PIC, and the submodular approximation, SIC, slightly underper-
form GIC. This is despite a formal approximation guarantee on the performance of SIC. Figure 2d
shows the performance of the methods on each of the three types of kernels.

• For Wishart matrices, SIC does slightly better than PIC, and both methods are consistently
finding good sets whose value is at least 99% that of the GIC.

• For cluster matrices, SIC and PIC struggle, sometimes choosing sets with less than half the
value of GIC.
• For Laplacian matrices, PIC is identical to GIC. This is because Laplacian matrices are

M-matrices, and hence L does not need to be projected. The SIC results are also consistently
good. In the plot, we show values for Laplacians with edge existence parameter p = 0.01
rather than the p = 0.2 used in earlier experiments, as for p = 0.2 the spectrum is non-flat
enough that SIC results are indistinguishable from PIC and GIC.

The SIC trends in Figure 2d can be explained by the extent to which f is well-approximated by the
SIC objective, f̂ . In Figure 2e we plot the ratio of the two. Note that for Wishart and Laplacian
matrices, the f/f̂ ratio decays slowly with k, hence optimizing f̂ is very similar to optimizing f . For
the cluster matrices, the ratio grows dramatically with k, which explains the poor performance of
SIC for low values of k.

5 Conclusion

Our proposed MIC optimization problem has advantages over the common MAP setup for recom-
mender systems in terms of interpretability and train-test time matching. In this work we have shown
that the MIC objective can often be well-approximated by a submodular function and optimized
by a straightforward greedy algorithm. Future work includes the application of MIC to real-world
recommendation systems.

References
L. Chen, G. Zhang, and H. Zhou. Improving the Diversity of Top-N Recommendation via Determi-

nantal Point Process. In Large Scale Recommendation Systems Workshop, 2017.

C. Dupuy and F. Bach. Learning Determinantal Point Processes in Sublinear Time. Conference on
Artificial Intelligence and Statistics (AIStats), 2018.

U. Feige. On Maximizing Welfare When Utility Functions Are Subadditive. SIAM Journal on
Computing (SICOMP), 39, 2009.

S. Friedland and S. Gaubert. Submodular Spectral Functions of Principal Submatrices of a Hermitian
Matrix, Extensions and Applications. Linear Algebra and its Applications, 438, 2013.

M. Gartrell, U. Paquet, and N. Koenigstein. Low-Rank Factorization of Determinantal Point Processes.
In AAAI Conference on Artificial Intelligence, 2017.

J. Gillenwater, A. Kulesza, and B. Taskar. Near-Optimal MAP Inference for Determinantal Point
Processes. In Neural Information Processing Systems (NIPS), 2012.

J. Gillenwater, A. Kulesza, E. Fox, and B. Taskar. Expectation-Maximization for Learning Determi-
nantal Point Processes. In Neural Information Processing Systems (NIPS), 2014.

W. Hager. Updating the Inverse of a Matrix. SIAM Review, 31, 1989.

J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating Collaborative Filtering Recommender
Systems. ACM Transactions on Information Systems (TOIS), 22, 2004.

9

https://arxiv.org/abs/1709.05135
https://arxiv.org/abs/1709.05135
https://arxiv.org/abs/1610.05925
https://epubs.siam.org/doi/abs/10.1137/070680977?journalCode=smjcat
https://arxiv.org/pdf/1007.3478.pdf
https://arxiv.org/pdf/1007.3478.pdf
https://arxiv.org/abs/1602.05436
http://jgillenw.com/nips2012.pdf
http://jgillenw.com/nips2012.pdf
http://jgillenw.com/nips2014.pdf
http://jgillenw.com/nips2014.pdf
https://doi.org/10.1137/1031049
https://grouplens.org/site-content/uploads/evaluating-TOIS-20041.pdf
https://grouplens.org/site-content/uploads/evaluating-TOIS-20041.pdf

N. Hurley and M. Zhang. Novelty and Diversity in Top-N Recommendation – Analysis and Evaluation.
ACM Transactions on Internet Technology (TOIT), 10, 2011.

T. Kathuria and A. Deshpande. On Sampling and Greedy MAP Inference of Constrained Determi-
nantal Point Processes. 2017.

A Kulesza and B Taskar. Learning Determinantal Point Processes. In Conference on Uncertainty in
Artificial Intelligence (UAI), 2011.

A Kulesza and B Taskar. Determinantal Point Processes for Machine Learning. Foundations and
Trends in Machine Learning, 5, 2012.

Z. Mariet and S. Sra. Fixed-point Algorithms for Learning Determinantal Point Processes. In
International Conference on Machine Learning (ICML), 2015.

G. Nemhauser, L. Wolsey, and M. Fisher. An Analysis of Approximations for Maximizing Submodu-
lar Set Functions I. Mathematical Programming, 14, 1978.

A. Nikolov and M. Singh. Maximizing Determinants under Partition Constraints. In Symposium on
the Theory of Computing (STOC), 2016.

B. Smyth and P. McClave. Similarity vs. Diversity. In International Conference on Case-Based
Reasoning, 2001.

E. Suhubi. Functional Analysis. Springer Netherlands, 2003. ISBN 9781402016165.

A. Swaminathan, A. Krishnamurthy, A. Agarwal, M. Dudı́k, J. Langford, D. Jose, and I. Zitouni.
Off-Policy Evaluation for Slate Recommendation. In Neural Information Processing Systems
(NIPS), 2017.

M. Wilhelm, A. Ramanathan, A. Bonomo, S. Jain, E.H. Chi, and J. Gillenwater. Practical Diversified
Recommendations on YouTube with Determinantal Point Processes. In Conference on Information
and Knowledge Management (CIKM), 2018.

M. Zhang and Z. Ou. Block-Wise MAP Inference for Determinantal Point Processes with Application
to Change-Point Detection. In Statistical Signal Processing Workshop (SSP), 2016.

C. Ziegler, S. McNee, J. Konstan, and G. Lausen. Improving Recommendation Lists Through Topic
Diversification. In International Conference on the World Wide Web (WWW), 2005.

10

https://dl.acm.org/citation.cfm?id=1944341
https://arxiv.org/abs/1607.01551
https://arxiv.org/abs/1607.01551
http://www.alexkulesza.com/pubs/dpplearn_uai11.pdf
https://arxiv.org/pdf/1207.6083.pdf
https://arxiv.org/abs/1508.00792
http://www.cs.toronto.edu/~eidan/papers/submod-max.pdf
http://www.cs.toronto.edu/~eidan/papers/submod-max.pdf
https://www.microsoft.com/en-us/research/publication/maximizing-determinants-partition-constraints/
https://link.springer.com/chapter/10.1007/3-540-44593-5_25
https://books.google.com/books?id=lgy-8VeVXf4C&printsec=frontcover#v=onepage&q&f=false
https://arxiv.org/abs/1605.04812
http://jgillenw.com/cikm2018.pdf
http://jgillenw.com/cikm2018.pdf
https://arxiv.org/abs/1503.06239
https://arxiv.org/abs/1503.06239
https://dl.acm.org/citation.cfm?id=1060754
https://dl.acm.org/citation.cfm?id=1060754

