
A Proof of Lemma 1

Lemma 1 gives the exact form of q’s kernel. Before giving the proof, we briefly note that q differs
slightly from the typical DPPs we have seen thus far, in its conditional nature. More precisely, for a
set Yi of size k, q qualifies as a k-DPP, a DPP conditioned on sets of size k. Formally, a k-DPP with
(non-marginal) kernel L assigns probability ∝ det(LY ) for |Y | = k, and probability zero for |Y | 6=
k. As for regular DPPs, a k-DPP can be efficiently sampled from and marginalized, via modifications
of the standard DPP algorithms. For example, the normalization constant for a k-DPP is given by the
identity

∑
Y :|Y |=k det(LY ) = eNk (L), where eNk (L) represents the kth-order elementary symmetric

polynomial on the eigenvalues of L [1]. [2]’s “summation algorithm” computes eNk (L) in O(Nk)
time. In short k-DPPs enjoy many of the advantages of DPPs. Their identical parameterization,
in terms of a single kernel, makes our E-step simple, and their normalization and marginalization
properties are useful for the M-step updates.
Lemma 1. At the completion of the E-step, q(J | Yi) with |Yi| = k is a k-DPP with (non-marginal)
kernel QYi :

QYi = RZYiR, and q(J | Yi) ∝ 1(|Yi| = |J |) det(QYi

J ) , where (A.1)

U = V >, ZYi = UYi(UYi)>, and R = diag
(√

λ/(1− λ)
)
. (A.2)

Proof. Since the E-step is an unconstrained KL divergence minimization, we have:

q(J | Yi) = pK(J | Yi) =
pK(J, Yi)

pK(Yi)
∝ pK(J, Yi) = pK(J)pK(Yi | J) (A.3)

where the proportionality follows because Yi is held constant in the conditional q distribution. Re-
calling Equation (9), notice that pK(Yi | J) can be re-expressed as follows:

pK(Yi | J) = 1(|Yi| = |J |) det([V J(V J)>]Yi
) = 1(|Yi| = |J |) det([UYi(UYi)>]J) . (A.4)

This follows from the identity det(AA>) = det(A>A), for any full-rank square matrixA. The sub-
sequent swapping of J and Yi, once V > is re-written as U , does not change the indexed submatrix.

Plugging this back into Equation (A.3):

q(J | Yi) ∝ pK(J)1(|Yi| = |J |) det([UYi(UYi)>]J) = pK(J)1(|Yi| = |J |)PUYi
(J) (A.5)

where PUYi represents an elementary DPP, just as in Equation (6), but over J rather than Y . Multi-
plying this expression by a term that is constant for all J maintains proportionality and allows us to
simplify the the pK(J) term. Taking the definition of pK(J) from Equation (9):

q(J | Yi) ∝

 N∏
j=1

1

1− λj

1(|Yi| = |J |)PUYi
(J)

∏
j∈J

λj
∏
j /∈J

(1− λj) (A.6)

= 1(|Yi| = |J |)PUYi
(J)

∏
j∈J

λj
1− λj

(A.7)

Having eliminated all dependence on j /∈ J , it is now possible to express q(J | Yi) as the J principal
minor of a PSD kernel matrix (see QYi in the statement of the lemma). Thus, q is a k-DPP.
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B M-Step eigenvalue updates

We can exploit standard k-DPP marginalization formulas to efficiently compute the eigenvalue up-
dates for EM. Specifically, the exponential-size sum over J from Equation (18) can be reduced to
the computation of an eigendecomposition and several elementary symmetric polynomials on the
resulting eigenvalues. Let e−jk−1(QYi) be the (k − 1)-order elementary symmetric polynomial over
all eigenvalues of QYi except for the jth one. Then, by direct application of [3, Equation 205], q’s
singleton marginals are:

∑
J:j∈J

q(J | Yi) = q(j ∈ J | Yi) =
1

eN|Yi|(Q
Yi)

N∑
r=1

v̂r(j)2λ̂re
−r
|Yi|−1(QYi) . (B.8)

As previously noted, elementary symmetric polynomials can be efficiently computed using [2]’s
“summation algorithm”.

We can further reduce the complexity of this formula by noting that rank of the N × N matrix
QYi = RZYiR is at most |Yi|. Because QYi only has |Yi| non-zero eigenvalues, it is the case that,
for all r:

λ̂re
−r
|Yi|−1(QYi) = eN|Yi|(Q

Yi) . (B.9)

Recalling that the eigenvectors and eigenvalues of QYi are denoted V̂ , Λ̂, the computation of the
singleton marginals of q that are necessary for the M-step eigenvalue updates can be written as
follows:

q(j ∈ J | Yi) =
1

eN|Yi|(Q
Yi)

N∑
r=1

v̂r(j)2λ̂re
−r
|Yi|−1(QYi) =

|Yi|∑
r=1

v̂r(j)2 . (B.10)

This simplified formula is dominated by the O(N3) cost of the eigendecompositon required to find
V̂ . This cost can be further reduced, to O(Nk2), by eigendecomposing a related matrix instead of
QYi . Specifically, consider the |Yi| × |Yi| matrix HYi = VYi

R2V >Yi
. Let Ṽ and Λ̃ be the eigen-

vectors and eigenvalues of HYi . This Λ̃ is identical to the non-zero eigenvalues of QYi , Λ̂, and its
eigenvectors are related as follows:

V̂ = RV >Yi
Ṽ diag

(
1√
λ̃

)
. (B.11)

Getting V̂ via Equation (B.11) is an O(N |Yi|2) operation, given the eigendecomposition of HYi .
Since this eigendecomposition is an O(|Yi|3) operation, it is dominated by the O(N |Yi|2). To
compute Equation (B.10) for all j requires only O(Nk) time, given V̂ . Thus, letting k = maxi |Yi|,
the size of the largest example set, the overall complexity of the eigenvalue updates is O(nNk2).
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C M-Step eigenvector gradient

Recall that the M-step objective is:

F (V,Λ) =

n∑
i=1

∑
J

q(J | Yi) [log pK(J) + log pK(Yi | J)] . (C.12)

The pK(J) term does not depend on the eigenvectors, so we only have to be concerned with the
pK(Yi | J) term when computing the eigenvector derivatives. Recall that this term is defined as
follows:

pK(Yi | J) = 1(|Yi| = |J |) det
([
V J(V J)>

]
Yi

)
. (C.13)

Applying standard matrix derivative rules such as [4, Equation 55], the gradient of the M-step ob-
jective with respect to entry (a, b) of V is:

∂F (V,Λ)

∂[V ]ab
=

n∑
i=1

∑
J

q(J | Yi)1(a ∈ Yi ∧ b ∈ J)2[(W J
Yi

)−1]gYi
(a) · vb(Yi) (C.14)

where W J
Yi

= [V J(V J)T ]Yi and the subscript gYi(a) indicates the index of a in Yi. The
[(W J

Yi
)−1]gYi

(a) indicates the corresponding row in W J
Yi

, and vb(Yi) is eigenvector b restricted to
Yi. Based on this, we can more simply express the derivative with respect to the entire V matrix:

∂F (V,Λ)

∂V
=

n∑
i=1

∑
J

2q(J | Yi)(Ẇ J
Yi

)−1V̇ (C.15)

where the V̇ = diag(1Yi
)V diag(1J) is equal to V with the rows ` /∈ Y and the columns j /∈ J

zeroed. Similarly, the other half of the expression represents (W J
Yi

)−1 sorted such that gYi
(`) = `

and expanded with zero rows for all ` /∈ Yi and zero columns for all ` /∈ Yi. The exponential-size
sum over J could be approximated by drawing a sufficient number of samples from q, but in practice
that proves somewhat slow. It turns out that it is possible, by exploiting the relationship between Z
and V , to perform the first gradient step on V without needing to sample q.

C.1 Exact computation of the first gradient

Recall that ZYi is defined to be UYi(UYi)>, where U = V >. The pK(Yi | J) portion of the M-step
objective, Equation (C.13), can be re-written in terms of ZYi :

pK(Yi | J) = 1(|Yi| = |J |) det
(
ZYi

J

)
. (C.16)

Taking the gradient of the M-step objective with respect to ZYi :

∂F (V,Λ)

∂ZYi
=
∑
J

q(J | Yi)(ZYi

J )−1 . (C.17)

Plugging in the k-DPP form of q(J | Yi) derived in the main paper:

∂F (V,Λ)

∂ZYi
=

1

eN|Yi|(Q
Yi)

∑
J:|J|=|Yi|

det(QYi

J )(ZYi

J )−1 . (C.18)

Recall from the background section the identity used to normalize a k-DPP, and consider taking its
derivative with respect to ZYi :∑

J:|J|=k

det(QYi

J ) = eNk (QYi) =⇒
derivative wrt ZYi

∑
J:|J|=k

det(QYi

J )(ZYi

J )−1 =
∂eNk (QYi)

∂ZYi
(C.19)

Note that this relationship is only true at the start of the M-step, before V (and hence Z) undergoes
any gradient updates; a gradient step for V would mean that QYi , which remains fixed during the
M-step, could no longer can be expressed as RZYiR. Thus, the formula we develop in this section
is only valid for the first gradient step.
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Plugging Equation (C.19) back into Equation (C.18):

∂F (V,Λ)

∂ZYi
=

1

eN|Yi|(Q
Yi)

∂eN|Yi|(Q
Yi)

∂ZYi
. (C.20)

Multiplying this by the derivative of ZYi with respect to V and summing over i gives the final form
of the gradient with respect to V . Thus, we can compute the value of the first gradient on V exactly
in polynomial time.

C.2 Faster computation of the first gradient

Recall from Section B that the rank of the N × N matrix QYi = RZYiR is at most |Yi| and that
its non-zero eigenvalues are identical to those of the |Yi| × |Yi| matrix HYi = VYiR

2V >Yi
. Since the

elementary symmetric polynomial eNk depends only on the eigenvalues of its argument, this means
HYi can substitute for QYi in Equation (C.20), if we change variables back from Z to V :

∂F (V,Λ)

∂V
=

n∑
i=1

1

eN|Yi|(H
Yi)

∂eN|Yi|(H
Yi)

∂V
(C.21)

where the i-th term in the sum is assumed to index into the Yi rows of the V derivative. Further,
because H is only size |Yi| × |Yi|:

eN|Yi|(H
Yi) = e

|Yi|
|Yi|(H

Yi) = det(HYi) . (C.22)

Plugging this back into Equation (C.21) and applying standard matrix derivative rules:

∂F (V,Λ)

∂V
=

n∑
i=1

1

det(HYi)

∂ det(HYi)

∂V
=

n∑
i=1

2(HYi)−1VYi
R2 . (C.23)

Thus, the initial M-step derivative with respect to V can be more efficiently computed via the above
equation. Specifically, the matrix HYi can be computed in time O(N |Yi|2), since R is a diagonal
matrix. It can be inverted in time O(|Yi|3), which is dominated by O(N |Yi|2). Thus, letting k =
maxi |Yi|, the size of the largest example set, the overall complexity of computing the eigenvector
gradient in Equation (C.23) is O(nNk2).
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D Baby registry experiments

Figure 1a and Figure 1b contain details, referred to in the main paper, about the baby registry dataset
and the learning methods’ performance on it.

Category N # of Regs
feeding 100 13300
gear 100 11776
diaper 100 11731
bedding 100 11459
apparel 100 10479
bath 100 10179
toys 62 7051
health 62 9839
media 58 4132
strollers 40 5175
safety 36 6224
carseats 34 5296
furniture 32 4965

(a)

Category Wishart Moments Moments
(all data) (less data)

safety (10.88) 11.05 (11.12) -0.13 (10.19) 16.53 (19.46)
furniture (9.80) 9.89 (10.07) 0.23 (8.00) 10.47 (13.57)
carseats (8.06) 8.16 (8.31) 0.61 (3.40) 5.85 (8.28)
strollers (7.66) 7.77 (7.88) -0.07 (2.51) 5.35 (7.41)
health (2.50) 2.54 (2.58) 1.37 (2.67) 5.36 (6.03)
bath (2.50) 2.54 (2.59) -0.24 (2.22) 3.56 (4.23)
media (2.37) 2.42 (2.49) -0.17 (0.44) 1.93 (2.77)
toys (1.76) 1.80 (1.83) 0.13 (1.01) 2.39 (4.30)
bedding (0.42) 1.34 (1.44) 2.81 (2.44) 3.19 (3.70)
apparel (0.88) 0.92 (0.93) 0.53 (0.78) 1.59 (2.23)
diaper (0.50) 0.58 (1.02) -0.47 (-0.87) -0.19 (1.26)
gear (0.03) 0.05 (0.07) 0.86 (1.36) 2.63 (3.22)
feeding (-0.11) -0.09 (-0.07) -0.03 (-1.32) 0.61 (1.22)
average 3.76 0.41 4.55

(b)

Figure 1: (a) Size of the post-filtering ground set for each product category, and the associated
number of sub-registries (subsets of {1, . . . , N}). (b) Relative test log-likelihood differences,
100 (EM−KA)

|KA| , for three cases: a Wishart initialization, a moments-matching initialization, and a
moments-matching initialization in a low-data setting (only n = 2N examples in the training set).
For the first and third settings there is some variability: in the first setting, because the starting matrix
drawn from the Wishart can vary; in the third setting, because the training examples (drawn from
the full training set used in the other two settings) can vary. Thus, for these two settings the numbers
in parentheses give the first and third quartiles over 25 trials.

D.1 Exponentiated gradient

Besides the EM method that we focus on in this paper, we found that an exponentiated gradient
method is also able to improve on projected gradient ascent (the KA method). [5] examines an
exponentiated gradient update scheme for positive semi-definite matrices, and we briefly discuss the
application of their work to our problem here.
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One way of viewing the updates of the standard gradient ascent method is as a solution to the
following minimization problem:

K ′ = arg min
K′

‖K ′ −K‖2F − ηL(K ′) . (D.24)

This minimization balances the goal of maximizing likelihood with the goal of minimizing change
in K, where the learning rate η quantifies the relative importance of these two goals. Taking the
derivative, setting it equal to zero, and solving for K ′:

K ′ = K +
η

2

∂L(K ′)

∂K ′
. (D.25)

This is identical to the gradient update once we make the approximation ∂L(K′)
∂K′ ≈ ∂L(K)

∂K . [5]
develops an exponentiated gradient update rule by replacing the Frobenius norm in Equation (D.24)
with a different measure of similarity between K and K ′. Specifically, [5] uses the von Neumann
divergence:

tr(K ′ logK ′ −K ′ logK −K ′ +K) . (D.26)

The solution to the resulting optimization problem (again approximating ∂L(K′)
∂K′ with ∂L(K)

∂K ) is:

K ′ = exp

[
logK + η

∂L(K)

∂K

]
. (D.27)

Notice that the matrix exponential here implies thatK ′ will have non-negative eigenvalues. Thus, the
only projection necessary to enforce the DPP kernel learning constraints is to cap the eigenvalues at
1. This eliminates the type of problems we observed with the naive projected gradient method (KA),
where too many eigenvalues were truncated at zero. If we apply this exponentiated update rule to
the problem of learning DPP kernels for the baby registry data, its performance is nearly identical to
that of EM: with Wishart initialization the relative gain in log-likelihood of EM over exponentiated
gradient averages 0.57%, and for the moments-matching initialization it averages −0.18%.
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