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ABSTRACT

The recursive least squares (RLS) algorithm is well known and has
been widely used for many years. Most analyses of RLS have as-
sumed statistical properties of the data or the noise process, but re-
cent robust H∞ analyses have been used to bound the ratio of the
performance of the algorithm to the total noise. In this paper, we
provide an additive analysis bounding the difference between per-
formance and noise. Our analysis provides additional convergence
guarantees in general, and particular benefits for structured input
data. We illustrate the analysis using human speech and white noise.

Index Terms— Adaptive estimation, Adaptive signal process-
ing, Machine learning

1. INTRODUCTION

The recursive least squares (RLS) algorithm [1, 2] plays a major
role in estimation theory for signal processing and online regression
in machine learning. Most previous analyses of the RLS algorithm
make statistical assumptions about the data, noise, or model (see,
e.g., [3, 4]). Recently, however, there has been a growing interest in
adaptive algorithms that can be proven robust to specific properties
of the input using H∞ theory [4]. Most previous H∞ bounds char-
acterize the ratio between the performance of an algorithm and the
noise energy; for example, [4] provides such a bound for the Kalman
filter (with RLS as a special case). These bounds can be quite loose
if the bounding quantity is far from 1.

In this work we provide a new family of bounds that are additive
in nature. Our analysis bounds the difference between the cumula-
tive performance of the algorithm and the noise energy. Such bounds
are more accurate in the presence of large amounts of noise. Further-
more, our bounds can be used to prove convergence of our algorithm
to the best (linear) model, and typically also bound the rate of conver-
gence. After presenting a variant of the RLS algorithm, we describe
an initial bound that characterizes the tradeoff implicit in the learn-
ing rate employed by the algorithm. When the learning rate is too
small, the algorithm under-fits, and its performance is bounded by
a quantity proportional to the norm of the comparison vector model
u. On the other hand, if the learning rate is too large, the algorithm
over-fits, and its performance is proportional to the cumulative noise.
We show that if the learning rate is properly tuned, one can obtain an
additive bound with a convergence rate decreasing as 1/

√
N , where

N is the number of inputs obtained so far. We then show a stronger
additive bound with a convergence rate of log(N)/N . This rate is
faster if the inputs are structured in the sense that they are captured in

Input parameters : Tradeoff parameter a > 0, learning rate r
Initialize: w0 = 0 , P0 = aI
For i = 1, . . . , N, . . . ,

• Receive an input-output pair xi ∈ Rd and yi ∈ R
• Compute prediction mi = wi−1

>xi
• Define loss `i = (mi − yi)2
• Compute:

βi =
1

x>i Pi−1xi + r
; αi = (mi − yi)βi (1)

• Update
wi = wi−1 − αiPi−1xi (2)

Pi = Pi−1 − βiPi−1xix
>
i Pi−1 (3)

Fig. 1. The RLS algorithm.

a skewed ellipsoid. We conclude the paper by illustrating the bound
using speech and white noise signals.

2. RECURSIVE LEAST-SQUARES

Adaptive algorithms maintain a function from the input space to the
output space, parameterized by w, and update the function in iter-
ations or rounds. On iteration i the algorithm receives a training
example as a pair: an input vector xi ∈ Rd and a desired output
scalar yi ∈ R, which is used to update the current parameter wi.
Linear functions of the form f(x) = w>i x are commonly used for
their simplicity and reliable performance on many practical tasks.

Although we are focusing on adaptive algorithms, it is useful
to formulate the estimation problem with a single fixed filter. One
common criterion is the regularized least-squares objective, which
dates back to Gauss [5]:

min
w

{
a(w>w) +

N∑
i=1

(
yi −w>xi

)2}
,

for some tradeoff parameter a > 0. The recursive least-squares
(RLS) algorithm [1, 2] solves this optimization problem adaptively,
using only a single input-output instance at a time. The pseduo code
of the algorithm is given in Fig. 1. The variant of the RLS algorithm
we use employs a learning rate denoted by r. Using the Woodbury
identity we can rewrite the update of the matrix Pi in (3) as

P−1
i = P−1

i−1 +
xix

>
i

r
. (4)



As a consequence we get that the eigenvalues of the update matrix
Pi in (3) are monotonically decreasing:

Pi � Pi−1 ⇔ P−1
i � P−1

i−1 , (5)

where A � B if and only if B −A is a PSD matrix. We begin with
an analysis of the RLS algorithm.

3. ANALYSIS

Our analysis of the RLS algorithm considers two prediction settings:
the first is motivated by adaptive prediction, and the second by online
regression in the context of machine learning. In the first case we
assume the existence of a linear model u which, together with an
additive noise vi, was used to generate the outputs. That is,

yi = u>xi + vi .

In this setting the goal of the algorithm is to do well compared with
the (unseen) true output u>xi, and our analysis compares the total
prediction loss with the total noise. Specifically, we denote the in-
stantaneous a priori error with respect to the target output u>xi and
the cumulative a priori loss, respectively, by

pi = w>i−1xi − u>xi A(N) =

N∑
i=1

p2i . (6)

We define the instantaneous noise and cumulative noise as, respec-
tively,

vi = u>xi − yi V(N) =

N∑
i=1

v2i . (7)

The goal of the bound is to relate the cumulative a priori loss A(N)

with the cumulative noise V(N).
Machine learning online regression offers an alternative view.

Here, we do not assume the existence of a model u that generated
the (corrupted) outputs. Instead, the goal of the algorithm is to accu-
rately predict the quantities yi given xi. The algorithm is compared
against the best function in some class; here we use the class of lin-
ear models. Specifically, we denote the instantaneous error of the
algorithm by `i and the cumulative error by L(N):

`i = w>i−1xi − yi L(N) =
N∑
i=1

`2i (8)

Again, in this setting we do not assume the existence or knowledge
of a specific mechanism that generated the outputs yi. Since we
have no assumption about the way outputs are actually created, we
compare our success at predicting yi with the best possible linear
model given the entire sequence of input and outputs. Under this
view, the quantity vi is not the amount of additive noise with respect
to a true output, but just the amount of error a comparison model u
suffers over the same sequence. In this respect the machine learning
view is natural as typical bounds are comparing two quantities of the
same type (L(N) and V(N)), both of which measure the total loss
over the sequence. The former is the loss of the algorithm (which
employs a sequence of linear models) and the later is the loss of a
single optimal model. On the other hand, the adaptive prediction
view naturally motivates the use of linear models, as we assume that
the process which generated the outputs is indeed linear.

A typicalH∞ bound [4] is multiplicative, having the form

A(N) ≤ B
(
V(N) + (1/a)u>u

)
.

In words, the bound is on the ratio between the algorithm’s a pri-
ori cumulative loss and the sum of the regularization and cumulative
noise. The bound tells us that, independently of the choice of target
function u and noise {vi}, the total loss is not larger than B times
the total noise. Such bounds are informative if the total loss is close
to zero and if B is relatively small (order of 1), otherwise the quan-
tity BV(N) is too large and the bound becomes uninformative. A
major drawback of these bounds is that they do not guarantee that
the performance of the algorithm, in terms of the cumulative (a pri-
ori or prediction) loss, will eventually converge to the loss obtained
by the reference model u, even after observing large (even infinite)
amounts of data. This is because the ratio of A(N) and V(N) is
bounded only by B which often is strictly greater than 1.

We now describe and develop bounds on the cumulative loss of
the algorithm (either A(N) or L(N)) that are additive in nature and
are of the form

A(N) ≤ V(N) + C(N) , L(N) ≤ V(N) +D(N) ,

where C(N) and D(N) are not necessarily constant in the number of
input-output pairs N . However, as long as C(N) or D(N) are sub-
linear in N we can conclude that the average loss of the algorithm
will converge to the average noise (or average loss of the reference
model u), that is,

A(N)/N → V(N)/N , L(N)/N → V(N)/N .

The quantities C(N) and D(N) provide the rate of convergence. We
start with a general multiplicative bound and show that it can be
tuned to get an additive bound. We then give a general additive
bound.

3.1. First Bound

Let Ψi = (wi − u)> P−1
i (wi − u). We start with the following

lemma:

Lemma 1 Let u ∈ Rd be an arbitrary weight vector. Then for all i,

Ψi −Ψi−1 = − `2i
χi + r

+
v2i
r

, where χi = x>i Pi−1xi . (9)

The proof is omitted due to lack of space. We now prove the first
result of this section.

Theorem 2 Assume that supi ‖xi‖
2 ≤ X2 for some X > 0 and

P0 = a I . Let r be rewritten as r = aX2 1−ν
ν

for some ν ∈ (0, 1].
The cumulative loss of the algorithm is bounded as follows:

L(N) ≤X
2 ‖u‖2

ν
+
V(N)

1− ν . (10)

Proof: We write the following telescoping sum,

−Ψ0 ≤ ΨN −Ψ0 =

N∑
i=1

(Ψi −Ψi−1) ,

where the first inequality follows since ΨN ≥ 0. Substituting
Lemma 1 we get −Ψ0 ≤ −

∑
i

`2i
χi+r

+
∑
i

v2i
r

. Rearranging the
terms gives ∑

i

`2i
χi + r

≤ Ψ0 +
∑
i

v2i
r
. (11)



Substituting χi ≤ a ‖xi‖2 ≤ aX2 (from (5)) and Ψ0 = ‖u‖2 /a:

∑
i

`2i
aX2 + aX2 1−ν

ν

=
∑
i

`2i
aX2

ν

≤ ‖u‖
2

a
+
∑
i

v2i
aX2 1−ν

ν

.

Multiplying both sides with aX2/ν yields the bound.
A few comments are in order. First, the Least-Mean-Square (LMS)
algorithm [6], in which the weights are updated using the rule wi =
wi−1 + η (yi − xi ·wi−1)xi for some η > 0 has similar loss
bounds [7]:

L(N) ≤ X2 ‖u‖2

η
+
V(N)

1− η .

The two bounds are equivalent, when identifying η and ν. In prac-
tice, however, RLS often outperforms the LMS algorithm. Second,
our bound for RLS and the analysis of LMS have a multiplicative
factor strictly greater than 1, i.e. 1/(1 − η) or 1/(1 − ν) for RLS
and LMS, respectively. There is also an additional additive constant
factor ‖u‖2X2/η for LMS or ‖u‖2X2/ν for RLS. Third, interest-
ingly, the bound is explicitly independent of the value of the regular-
ization parameter a. A possible explanation is that it does depend on
a implicitly via the definition of ν (or r).

Furthermore, we now state a bound for an algorithm that uses an
optimal learning rate.

Corollary 3 Under the conditions of Theorem 2, if the algorithm is
run with

ν =

√
‖u‖2X2√

‖u‖2X2 +
√
V(N)

, (12)

then the cumulative loss it suffers is optimally bounded by

L(N) ≤ V(N) +X2 ‖u‖2 + 2

√
X2 ‖u‖2V(N) . (13)

The bound holds by substituting (12) in (10), and is optimal since
ν was chosen to minimize (10). To actually compute this optimal
learning rate ν we need to know or bound the energy of the noise
V(N) and the norm of the reference vector u. The former can be
actually measured or estimated in many applications, while the later
can be bounded or approximated.

We observe that even when we optimize the learning parameter
r (or ν) the difference between the cumulative loss of the algorithm
and the cumulative loss of a fixed weight vector u is bounded by
a quantity proportional to

√
V(N), which is on the order of

√
N ,

the number of input-output pairs. In other words, the rate at which
the (averaged) performance of the algorithm goes to the (averaged)
performance of any weight-vector is monotonically decreasing on
the order of 1/

√
N .

Before proceeding to a better bound in which the additive term
D(N) will be logarithmic in the number of input-output pairs, we
sketch a theorem and proof bounding the cumulative a priori loss as
opposed to the previously used prediction loss. From (6), (7) and (8)
it is easily verified that

`i = pi + vi . (14)

Using [4, Lemma 2] we get that for all α > 1,

`2i ≥
(

1− 1

α

)
p2i + (1− α) v2i . (15)

Substituting back in (10),

(1− α)V(N) +

(
1− 1

α

)
A(N) ≤ L(N) ≤ X2 ‖u‖2

ν
+
V(N)

1− ν .

Algebraic manipulation yields

A(N) ≤ X2 ‖u‖2

ν
(
1− 1

α

) + V(N)
1

1−ν − (1− α)(
1− 1

α

) . (16)

At this point we can leave the result as is, optimize the right hand
side with respect to α, or set a specific value for α. We choose the
latter option by minimizing only the right term of the bound over α

and get α = 1 +
√

1
1−ν . Substituting back in (16) we have

A(N) ≤ X2 ‖u‖2

ν

(
1− 1

1+
√

1
1−ν

) + V(N)

(
1 +

√
1

1− ν

)2

. (17)

The coefficient 1/

[
ν

(
1− 1

1+
√

1
1−ν

)]
of the left term is decreas-

ing in ν while the coefficient
(

1 +
√

1
1−ν

)2
of the right term is

increasing in ν, and thus there is, like the bound of Corollary 3, an
optimal value of ν that minimizes the bound. To summarize, we
have proved the following theorem.

Theorem 4 Under the conditions of Theorem 2, Eq. (17) holds.

3.2. Second Bound

We now provide a more refined analysis that yields an additive bound
with an additive term C(N) or D(N) that is only logarithmic in N if
the input data is well behaved. Furthermore, this bound holds for all
values of the learning parameter r.

Theorem 5 Assume that supi ‖xi‖
2 ≤ X2 for some X > 0 and

P0 = aI . The cumulative loss of the algorithm is bounded as fol-
lows:

L(N) ≤ V(N)+A log

(
det

(
aI +

1

r

N∑
i

xix
>
i

))
+r
‖u‖2

a
,

where A = supi
{
`2i
}
.

Proof: We start with (11) and use the fact that 1
s+t

= 1
s
− t

s(s+t)

to obtain∑
i

`2i
r
≤
∑
i

v2i
r

+
∑
i

`2iχi
r (χi + r)

+ Ψ0

≤
∑
i

v2i
r

+ sup
i

{
`2i
r

}∑
i

rχi
r (χi + r)

+ Ψ0 . (18)

Using a lemma very similar to [8, Lemma 4],∑
i

`2i
r
≤
∑
i

v2i
r

+ sup
i

{
`2i
r

}
log
(
det
(
P−1
N

))
+ Ψ0 .

Setting Ψ0 = ‖u‖2
a

we get,∑
i

`2i ≤
∑
i

v2i + sup
i

{
`2i
}

log
(
det
(
P−1
N

))
+
r

a
‖u‖2 .



Substituting the value of P−1
N concludes the proof.

We first claim that A = supi
(
`2i /r

)
is constant in N , i.e., it is

finite. Since the eigenvalues of Pi go to zero, the RLS algorithm
always converges. Therefore, under the reasonable assumption that
the output yi is bounded (that is supi |yi| < ∞) we get that A is
constant with respect to N .

Both the bound of Theorem 2 and the optimal bound in (13) have
two terms: a constant term r ‖u‖2 orX ‖u‖2, and a term dependent
on the number of examples. In (13) it grows like the square-root of
N . In Theorem 5, however, this term grows like log(N). To see this,
we use convexity and bound

log det

(
aI +

1

r

∑
i

xix
>
i

)
≤ d log

(
a+

NX2

rd

)
.

Note the that unlike the bound of Theorem 2, which is independent
of a, this bound is more refined and does depend explicitly on a. For
large values of a the second term increases (the algorithm is forced
to estimate wi close to zero) and the third term decreases (the norm
of the competitor w is less relevant), and vice versa for small values
of a. Finally, there is a similar tradeoff with the learning rate; for
large values of r (slow learning), the second term is small, as the
algorithm is less likely to over-fit, and the third term is large, as the
comparison model w is more important (the performance depends
on the hardness of the problem, and not on the learning process it-
self). We can derive bounds for the estimation problem analogously
to the derivation of Theorem 4. We omit the details due to lack of
space.

4. ILLUSTRATION AND CONCLUSIONS

We illustrate some properties of the second bound using a one-
second segment of human speech sampled at 16KHz as the input
signal s, and compare it to random noise n of the same length.
Both signals were equalized to have the same energy. We sim-
ulated filters of various tap sizes M = 2m for m=3, . . . , 11.
Each of the two input signals (speech s and noise n) was trans-
formed into a vector by taking the last M samples, specifically
xi = [si, si−1 . . . si−M+1] for the speech signal, and similarly for
the noise signal. We then compute the second term of the bound in
Theorem 5, that is, log

(
det
(
aI + 1

r

∑N
i xix

>
i /d

))
. Note that

we normalized each of the instances xi by the actual dimension d
(or M ) to compensate for the increased covariance due to increased
dimension.

We set a = 0.01 and r = 1. The value of the bound compared
with the tap size M is shown in the left panel of Fig. 2. We ob-
serve that for both signals the bound increases as the tap size gets
larger. This is because as we increase the memory M we capture
more structure in the signal, increase the complexity of the repre-
sentation, and expect to make more prediction errors. There is a
difference between the two signals, however. Random noise, by con-
struction, does not have any structure, and thus the bound increases
almost linearly with the tap size M (which is the dimension of the
input vectors xi). On the other hand, human speech contains reg-
ularities at various scales, and thus the bound is clearly sub linear
with the tap size M . We thus expect that the RLS algorithm will
perform better on speech signals as opposed to white noise. Finally,
the corresponding term of the bound of Theorem 2 is strictly larger
than this bound (not shown). This is because Theorem 2 does not
take into consideration any properties of the input besides the en-
ergy (norm), while Theorem 5 takes additional spectral properties of
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Fig. 2. Left: value of second term in bound of Theorem 5 vs. the
tap size M , which is the dimension of the input space d. Right:
the eigenvalue of the covariance matrix of both signals for tap size
M = d = 2048

the covariance matrix into consideration. As a result, we can plot
this part of the bound, ignoring the specific task at hand, as the term
we plot is a function solely of the input.

We further analyze the difference between the two settings in
the right panel of Fig. 2 where we plot the eigenvalues of the matrix
aI + 1

r

∑N
i xix

>
i for the same values of a = 0.01 and r = 1.

Eigenvalues corresponding to white noise have nearly uniform val-
ues, as expected from pure noise. On the other hand, the input signal
is structured, as evident from the large difference between the eigen-
values of the covariance matrix corresponding to the speech signal.

In summary, our analysis is additive in nature and provides better
convergence bounds than currentH∞ results. Future work includes
modifying RLS to yield improved convergence rates. Specifically,
one of our goals is to replace Theorem 5 with a more refined version
having smaller and more controlled values of the leading coefficient,
denoted by A.
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