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Abstract

Determinantal point processes (DPPs) are
appealing models for subset selection prob-
lems where diversity is desired. They offer
surprisingly efficient inference, including sam-
pling in O(N3) time and O(N2) space, where
N is the number of base items. However,
in some applications, N may grow so large
that sampling from a DPP becomes compu-
tationally infeasible. This is especially true
in settings where the DPP kernel matrix can-
not be represented by a linear decomposition
of low-dimensional feature vectors. In these
cases, we propose applying the Nyström ap-
proximation to project the kernel matrix into
a low-dimensional space. While theoretical
guarantees for the Nyström approximation in
terms of standard matrix norms have been
previously established, we are concerned with
probabilistic measures, like total variation dis-
tance between the DPP and its Nyström ap-
proximation, that behave quite differently. In
this paper we derive new error bounds for the
Nyström-approximated DPP and present em-
pirical results to corroborate them. We then
demonstrate the Nyström-approximated DPP
by applying it to a motion capture summa-
rization task.

1 Introduction

A determinantal point process (DPP) is a probabilistic
model that can be used to define a distribution over
subsets of a base set Y = {1, . . . , N}. A critical char-
acteristic of the DPP is that it encourages diversity : a
random subset sampled from a DPP is likely to con-
tain dissimilar items, where similarity is measured by
a kernel matrix L that parametrizes the process. The
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associated sampling algorithm is exact and efficient; it
uses an eigendecomposition of the DPP kernel matrix
L and runs in time O(N3) despite sampling from a
distribution over 2N subsets (Hough et al., 2006).

However, when N is very large, an O(N3) algorithm
can be prohibitively slow; for instance, when selecting
a subset of frames to summarize a long video. Fur-
thermore, while storing a vector of N items might be
feasible, storing an N ×N matrix often is not.

Kulesza and Taskar (2010) offer a solution to this prob-
lem when the kernel matrix can be decomposed as
L = B>B, where B is a D × N matrix and D � N .
In these cases a dual representation can be used to per-
form sampling in O(D3) time without ever constructing
L. If D is finite but large, the complexity of the algo-
rithm can be further reduced by randomly projecting
B into a lower-dimensional space. Gillenwater et al.
(2012) showed how such random projections yield an
approximate model with bounded variational error.

However, linear decomposition of the kernel matrix
using low-dimensional (or even finite-dimensional) fea-
tures may not be possible. Even a simple Gaussian
kernel has an infinite-dimensional feature space, and
for many applications, including video summarization,
the kernel can be even more complex and nonlinear.

Here we address these computational issues by applying
the Nyström method to approximate a DPP kernel
matrix L as a low rank matrix L̃. This approximation
is based on a subset of the N items called landmarks;
a small number of landmarks can often be sufficient to
reproduce the bulk of the kernel’s eigenspectrum.

The performance of adaptive Nyström methods has
been well documented both empirically and theoret-
ically. However, there are significant challenges in
extending these results to the DPP. Most existing the-
oretical results bound the Frobenius or spectral norm
of the kernel error matrix, but we show that these
quantities are insufficient to give useful bounds on dis-
tributional measures like variational distance. Instead,
we derive novel bounds for the Nyström approxima-
tion that are specifically tailored to DPPs, nontrivially
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Algorithm 1 DPP-Sample(L)

Input: kernel matrix L
{(vn, λn)}Nn=1 ← eigendecomposition of L
J ← ∅
for n = 1, . . . , N do
J ← J ∪ {n} with prob. λn

λn+1
V ← {vn}n∈J
Y ← ∅
while |V | > 0 do

Select i from Y with Pr(i) = 1
|V |
∑

v∈V (v>ei)
2

Y ← Y ∪ {i}
V ← V⊥ei , an orthonormal basis for the subspace
of V orthogonal to ei

Output: Y

characterizing the propagation of the approximation
error through the structure of the process.

Our bounds are provably tight in certain cases, and
we demonstrate empirically that the bounds are in-
formative for a wide range of real and simulated data.
These experiments also show that the proposed method
provides a close approximation for DPPs on large sets.
Finally, we apply our techniques to select diverse and
representative frames from a series of motion capture
recordings. Based on a user survey, we find that the
frames sampled from a Nyström-approximated DPP
form better summaries than randomly chosen frames.

2 Background

In this section we review the determinantal point pro-
cess (DPP) and its dual representation.We then outline
existing Nyström methods and theoretical results.

2.1 Determinantal Point Processes

A random point process P on a discrete base set Y =
{1, . . . , N} is a probability measure on the set 2Y of
all possible subsets of Y. For a positive semidefinite
N ×N kernel matrix L, the DPP, PL, is given by

PL(A) =
det(LA)

det(L+ I)
, (1)

where LA ≡ [Lij ]i,j∈A is the submatrix of L indexed
by elements in A, and I is the N ×N identity matrix.
We use the convention det(L∅) = 1. This L-ensemble
formulation of DPPs was first introduced by Borodin
and Rains (2005). Hough et al. (2006) showed that
sampling from a DPP can be done efficiently in O(N3),
as described in Algorithm 1.

In applications where diverse sets of a fixed size are
desired, we can consider instead the kDPP (Kulesza
and Taskar, 2011), which only gives positive probability
to sets of a fixed cardinality k. The L-ensemble con-
struction of a kDPP, denoted PkL, gives probabilities

Algorithm 2 Dual-DPP-Sample(B)

Input: B such that L = B>B.
{(v̂n, λn)}Nn=1 ← eigendecomposition of C = BB>

J ← ∅
for n = 1, . . . , N do
J ← J ∪ {n} with prob. λn

λn+1

V̂ ←
{

v̂n√
v̂>Cv̂

}
n∈J

Y ← ∅
while |V̂ | > 0 do

Select i from Y with Pr(i) = 1
|V̂ |

∑
v̂∈V̂ (v̂>Bi)

2

Y ← Y ∪ {i}
Let v̂0 be a vector in V̂ with B>i v̂0 6= 0

Update V̂ ←
{
v̂ − v̂>Bi

v̂>
0 Bi

v̂0 | v̂ ∈ V̂ − {v̂0}
}

Orthonormalize V̂ w.r.t. 〈v̂1, v̂2〉 = v̂>1 Cv̂2

Output: Y

PkL(A) =
det(LA)∑

|A′|=k det(LA′)
(2)

for all sets A ⊆ Y with cardinality k. Kulesza and
Taskar (2011) showed that kDPPs can be sampled
with the same asymptotic efficiency as standard DPPs
using recursive computation of elementary symmetric
polynomials.

2.2 Dual Representation of DPPs

In special cases where L is a linear kernel of low di-
mension, Kulesza and Taskar (2010) showed that the
complexity of sampling from these DPPs can be be
significantly reduced. In particular, when L = B>B,
with B a D×N matrix and D � N , the complexity of
the sampling algorithm can be reduced to O(D3). This
arises from the fact that L and the dual kernel matrix
C = BB> share the same nonzero eigenvalues, and
for each eigenvector vk of L, Bvk is the corresponding
eigenvector of C. This leads to the sampling algorithm
given in Algorithm 2, which takes time O(D3 +ND)
and space O(ND).

2.3 Nyström Method

For many applications, including SVM-based classi-
fication, Gaussian process regression, PCA, and, in
our case, sampling DPPs, fundamental algorithms re-
quire kernel matrix operations of space O(N2) and time
O(N3). A common way to improve scalability is to cre-
ate a low-rank approximation to the high-dimensional
kernel matrix. One such technique is known as the
Nyström method, which involves selecting a small num-
ber of landmarks and then using them as the basis for
a low rank approximation.

Given a sample W of l landmark items corresponding to
a subset of the indices of an N ×N symmetric positive
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semidefinite matrix L, let W be the complement of W
(with size N − l), let LW and LW denote the principal
submatrices indexed by W and W , respectively, and
let LWW denote the (N − l)× l submatrix of L with
row indices from W and column indices from W . Then
we can write L in block form as

L =

(
LW LWW

LWW LW

)
. (3)

If we denote the pseudo-inverse of LW as L+
W , then the

Nyström approximation of L using W is

L̃ =

(
LW LWW

LWW LWWL
+
WLWW

)
. (4)

Fundamental to this method is the choice ofW . Various
techniques have been proposed; some have theoretical
guarantees, while others have only been demonstrated
empirically. Williams and Seeger (2001) first proposed
choosing W by uniform sampling without replacement.
A variant of this approach was proposed by Frieze
et al. (2004) and Drineas and Mahoney (2005), who
sample W with replacement, and with probabilities
proportional to the squared diagonal entries of L. This
produces a guarantee that, with high probability,

‖L− L̃‖2 ≤ ‖L− Lr‖2 + ε

N∑
i=1

L2
ii . (5)

where Lr is the best rank-r approximation to L.

Kumar et al. (2012) later proved that the same rate
of convergence applies for uniform sampling without
replacement, and argued that uniform sampling outper-
forms other non-adaptive methods for many real-world
problems while being computationally cheaper.

2.4 Adaptive Nyström Method

Instead of sampling elements of W from a fixed distri-
bution, Deshpande et al. (2006) introduced the idea
of adaptive sampling, which alternates between select-
ing landmarks and updating the sampling distribution
for the remaining items. Intuitively, items whose ker-
nel values are poorly approximated under the existing
sample are more likely to be chosen in the next round.

By sampling in each round landmarks Wt chosen ac-

cording to probabilities p
(t)
i ∝ ‖Li − L̃i(W1 ∪ · · · ∪

Wt−1)‖22 (where Li denotes the ith column of L), we
are guaranteed that

E
(
‖L− L̃(W )‖F

)
≤ ‖L− Lr‖F

1− ε
+ εT

N∑
i=1

L2
ii . (6)

where Lr is the best rank-r approximation to L and
W = W1 ∪ · · · ∪WT .

Algorithm 3 Nyström-based (k)DPP sampling

Input: Chosen landmark indices W = {i1, . . . , il}
L∗W ← N × l matrix formed by chosen landmarks
LW ← principal submatrix of L indexed by W
L+
W ← pseudoinverse of LW

B = (L∗W )>(L+
W )1/2

Y ← Dual-(k)DPP-Sample(B)
Output: Y

Kumar et al. (2012) argue that adaptive Nyström meth-
ods empirically outperform the non-adaptive versions in
cases where the number of landmarks is small relative
to N . In fact, their results suggest that the perfor-
mance gains of adaptive Nyström methods relative to
the non-adaptive schemes are inversely proportional to
the percentage of items chosen as landmarks.

3 Nyström Method for DPP/kDPP

As described in Section 2.2, a DPP whose kernel matrix
has a known decomposition of rank D can be sampled
using the dual representation, reducing the time com-
plexity from O(N3) to O(D3 + ND) and the space
complexity from O(N2) to O(ND). However, in many
settings such a decomposition may not be available, for
example if L is generated by infinite-dimensional fea-
tures. In these cases we propose applying the Nyström
approximation to L, building an l-dimensional approxi-
mation and applying the dual representation to reduce
sampling complexity to O(l3 + Nl) time and O(Nl)
space (see Algorithm 3).

To the best of our knowledge, analysis of the error of
the Nyström approximation has been limited to the
Frobenius and spectral norms of the residual matrix
L − L̃, and no bounds exist for volumetric measures
of error which are more relevant for DPPs. The chal-
lenge here is to study how the Nyström approximation
simultaneously affects all possible minors of L.

In fact, a small error in the matrix norm can have a
large effect on the minors of the matrix:

Example 1. Consider matrices L = diag(M, . . . ,M, ε)
and L̃ = diag(M, . . . ,M, 0) for some large M and small
ε. Although ‖L− L̃‖F = ‖L− L̃‖2 = ε, for any A that
includes the final index, we have det(LA)− det(L̃A) =
εMk−1, where k = |A|.

It is conceivable that while error on some subsets is
large, most subsets are well approximated. Unfortu-
nately, this not generally true.

Definition 1. The variational distance between the
DPP with kernel L and the DPP with the Nystrom-
approximated kernel L̃ is given by

‖PL − PL̃‖1 =
1

2

∑
A∈2Y

|PL(A)− PL̃(A)| . (7)
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The variational distance is a natural global measure of
approximation that ranges from 0 to 1. Unfortunately,
it is not difficult to construct a sequence of matrices
where the matrix norms of L− L̃ tend to zero but the
variational distance does not.

Example 2. Let L be a diagonal matrix with en-
tries 1/N and L̃ be a diagonal matrix with N/2 en-
tries equal to 1/N and the rest equal to 0. Note that
||L − L̃||F = 1/

√
2N and ||L − L̃||2 = 1/N , which

tend to zero as N → ∞. However, the variational
distance is bounded away from zero. To see this, note
that the normalizers are det(L + I) = (1 + 1/N)N

and det(L̃+ I) = (1 + 1/N)N/2, which tend to e and√
e, respectively. Consider all subsets which have zero

mass in the approximation, S = {A : det(L̃A) = 0}.
Summing up the unnormalized mass of sets in the com-
plement of S, we have

∑
A/∈S det(LA) = det(L̃+I) and

thus
∑
A∈S det(LA) = det(L + I) − det(L̃ + I). Now

consider the contribution of just the sets in S to the
variational distance:

‖PL − PL̃‖1 ≥
1

2

∑
A∈S

∣∣∣∣ det(LA)

det(L+ I)
− 0

∣∣∣∣ (8)

=
det(L+ I)− det(L̃+ I)

2 det(L+ I)
, (9)

which tends to e−
√
e

2e ≈ 0.1967 as N →∞.

One might still hope that pathological cases occur only
for diagonal matrices, or more generally for matrices
that have high coherence (Candes and Romberg, 2007).
In fact, coherence has previously been used by Tal-
walkar and Rostamizadeh (2010) to analyze the error
of the Nyström approximation. Define the coherence

µ(L) =
√
N max

i,j
|vij | , (10)

where each vi is a unit-norm eigenvector of L. A di-
agonal matrix achieves the highest coherence of

√
N

and a matrix with all entries equal to a constant
has the lowest coherence of 1. Suppose that f(N)
is a sublinear but monotone increasing function with
limN→∞ f(N) = ∞. We can construct a sequence of
kernels L with µ(L) =

√
f(N) = o(

√
N) for which ma-

trix norms of the Nyström approximation error tend to
zero, but the variational distance tends to a constant.

Example 3. Let L be a block diagonal matrix with
f(N) constant blocks, each of size N/f(N), where each
non-zero entry is 1/N . Let L̃ be structured like L
except with half of the blocks set to zero. Note that
µ2(L) = f(N) by construction and that each block
contributes a single eigenvalue of 1

f(N) ; the Frobenius

and spectral norms of L − L̃ thus tend to zero as N
increases. The DPP normalizers are given by det(L+
I) = (1 + 1/f(N))f(N) → e and det(L̃ + I) = (1 +

1/f(N))f(N)/2 →
√
e. By a similar argument to the

one for diagonal matrices, we can show that variational

distance tends to e−
√
e

2e .

Unfortunately, in the cases above, the Nyström method
will yield poor approximations to the original DPPs.
Convergence of the matrix norm error alone is thus
generally insufficient to obtain tight bounds on the
resulting approximate DPP distribution. It turns out
that the gap between the eigenvalues of the kernel
matrix and the spectral norm error plays a major role
in the effectiveness of the Nyström approximation for
DPPs, as we will show in Theorems 1 and 2. In the
examples above, this gap is not large enough for a close
approximation; in particular, the spectral norm errors
are equal to the smallest non-zero eigenvalues. In the
next subsection, we derive approximation bounds for
DPPs that are applicable to any landmark-selection
scheme within the Nyström framework.

3.1 Preliminaries

We start with a result for positive semidefinite matrices
known as Weyl’s inequality:

Lemma 1. (Bhatia, 1997) Let L = L̃+E, where L, L̃
and E are all positive semidefinite N×N matrices with
eigenvalues λ1 ≥ . . . ≥ λN ≥ 0, λ̃1 ≥ . . . ≥ λ̃N ≥ 0,
and ξ1 ≥ . . . ≥ ξN ≥ 0, respectively. Then

λn ≤ λ̃m + ξn−m+1 for m ≤ n , (11)

λn ≥ λ̃m + ξn−m+N for m ≥ n . (12)

Going forward, we use the convention λi = 0 for i > N .
Weyl’s inequality gives the following two corollaries.

Corollary 1. When ξj = 0 for j = r + 1, . . . , N , then
for j = 1, . . . , N ,

λj ≥ λ̃j ≥ λj+r . (13)

Proof. For the first inequality, let n = m = j in (12).
For the second, let m = j and n = j + r in (11).

Corollary 2. For j = 1, . . . , N ,

λj − ξN ≥ λ̃j ≥ λj − ξ1 . (14)

Proof. We let n = m = j in (11) and (12), then rear-
range terms to get the desired result.

The following two lemmas pertain specifically to the
Nyström method.

Lemma 2. (Arcolano, 2011) Let L̃ be a Nyström ap-
proximation of L. Let E = L− L̃ be the corresponding
error matrix. Then E is positive semidefinite with
rank(E) = rank(L)− rank(L̃).
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Lemma 3. Denote the set of indices of the chosen
landmarks in the Nyström construction as W . Then if
A ⊆W ,

det(LA) = det(L̃A) . (15)

Proof. LW = L̃W and A ⊆W ; the result follows.

3.2 Set-wise bounds for DPPs

We are now ready to state set-wise bounds on the
Nyström approximation error for DPPs and kDPPs.
In particular, for each set A ⊆ Y, we want to bound
the probability gap |PL(A)− PL̃(A)|. Going forward,

we use PA ≡ PL(A) and P̃A ≡ PL̃(A).

Once again, we denote the set of all sampled landmarks
as W . We first consider the case where A ⊆ W . In
this case, by Lemma 3, det(LA) = det(L̃A). Thus
the only error comes from the normalization term in
Equation (1). Theorem 1 gives the desired bound.

Theorem 1. Let λ1 ≥ . . . ≥ λN be the eigenvalues of
L. If L̃ has rank r, L has rank m, and

λ̂i = max
{
λi+(m−r), λi − ‖L− L̃‖2

}
, (16)

then for A ⊆W ,

|PA − P̃A| ≤ PA

[∏n
i=1(1 + λi)∏n
i=1(1 + λ̂i)

− 1

]
. (17)

Proof.

|PA − P̃A| =

[
det(L̃A)

det(L̃+ I)
− det(LA)

det(L+ I)

]
(18)

=PA
[

det(L+ I)

det(L̃+ I)
− 1

]
= PA

[∏n
i=1(1 + λi)∏n
i=1(1 + λ̃i)

− 1

]
,

where λ̃1 ≥, . . . , λ̃N ≥ 0 represent the eigenvalues of L̃.
The first equality follows from the fact that λi ≥ λ̃i,
due to the first inequality in Corollary 1. Now note
that since L = L̃+ E, by Lemma 2, Corollary 1, and
Corollary 2 we have

λ̃i ≥ λi+(m−r), λ̃i ≥ λi − ξ1 = λi − ‖L− L̃‖2 . (19)

The theorem follows.

For A 6⊆ W , we must also account for error in the
numerator, since it is not generally true that det(LA) =
det(L̃A). Theorem 2 gives a set-wise probability bound.

Theorem 2. Assume L̃ has rank r, L has rank m,
|A| = k, and LA has eigenvalues λA1 ≥ . . . ≥ λAk . Let

λ̂i = max
{
λi+(m−r), λi − ‖L− L̃‖2

}
(20)

λ̂Ai = max
{
λAi − ‖L− L̃‖2, 0

}
. (21)

Then for A 6⊆W ,

|PA − P̃A| (22)

≤ PA max

{[
1−

∏k
i=1 λ̂

A
i∏k

i=1 λ
A
i

]
,

[∏n
i=1(1 + λi)∏n
i=1(1 + λ̂i)

− 1

]}
.

Proof.

P̃A − PA = PA

[
det(L+ I) det(L̃A)

det(L̃+ I) det(LA)
− 1

]
(23)

= PA

[(∏n
i=1(1 + λi)∏n
i=1(1 + λ̃i)

)(∏k
i=1 λ̃

A
i∏k

i=1 λ
A
i

)
− 1

]
.

Here λ̃A1 ,≥, . . . ,≥ λ̃Ak are the eigenvalues of L̃A. Now

note that LA = L̃A +EA. Since E is positive semidefi-
nite, EA is also positive semidefinite. Thus by Corollary
1 we have λAi ≥ λ̃Ai , and so

P̃A − PA ≤ PA

[∏n
i=1(1 + λi)∏n
i=1(1 + λ̂i)

− 1

]
. (24)

For the reverse inequality, we multiply Equation (23)
by -1 and use the fact that λi ≥ λ̃i and λAi ≥ 0. By
Corrolary 2,

λ̃Ai ≥ λAi − ξA1 ≥ λAi − ξ1 = λAi − ‖L− L̃‖2 , (25)

resulting in the inequality

PA − P̃A ≤ PA

[
1−

∏k
i=1 λ̂

A
i∏k

i=1 λ
A
i

]
. (26)

The theorem follows by combining the two inequalities.

Both theorems are tight if the approximation is exact
(‖L− L̃‖2 = 0). It can also be shown that these bounds
are tight for the diagonal matrix examples discussed at
the beginning of this section, where the spectral norm
error is equal to the non-zero eigenvalues. Moreover,
these bounds are convenient since they are expressed
in terms of the spectral norm of the error matrix and
therefore can be easily combined with existing approx-
imation bounds for the Nyström method. Note that
the eigenvalues of L and the size of the set A both
play important roles in the bound. In fact, these two
quantities are closely related; it is possible to show that
the expected size of a set sampled from a DPP is

E [|A|] =

N∑
n=1

λn
λn + 1

. (27)

Thus, if L has large eigenvalues, we expect the Nyström
approximation error to be large as well since the DPP
associated with L gives high probability to large sets.
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3.3 Set-wise bounds for kDPPs

We can obtain similar results for Nyström-
approximated kDPPs. In this case, for each set
A with |A| = k we want to bound the probability gap
|PkA − P̃kA|. Using Equation (2) for PkA, it is easy to
generalize the theorems in the preceding section. The
proofs for the following theorems are provided in the
supplementary material.

Theorem 3. Let ek denote the kth elementary sym-
metric polynomial of L:

ek(λ1, . . . , λN ) =
∑
|J|=k

∏
n∈J

λn . (28)

Under the conditions of Theorem 1, for A ⊆W ,

|PkA − P̃kA| ≤ PkA

[
ek(λ1, . . . , λN )

ek(λ̂1, . . . , λ̂N )
− 1

]
. (29)

Theorem 4. Under the conditions of Theorem 2, for
A 6⊆W ,

|PkA − P̃kA| (30)

≤ PkA max

{[
ek(λ1, . . . , λN )

ek(λ̂1, . . . , λ̂N )
− 1

]
,

[
1−

∏k
i=1 λ̂

A
i∏k

i=1 λ
A
i

]}
.

Note that the scale of the eigenvalues has no effect on
the kDPP; we can directly observe from Equation (2)
that scaling L does not change the kDPP distribution
since any constant factor appears to the kth power in
both the numerator and denominator.

4 Empirical Results

In this section we present empirical results on the
performance of the Nyström approximation for kDPPs
using three datasets small enough for us to perform
ground-truth inference in the original kDPP. Two of
the datasets are derived from real-world applications
available on the UCI repository1—the first is a linear
kernel matrix constructed from 1000 MNIST images,
and the second an RBF kernel matrix constructed
from 1000 Abalone data points—while the third is
synthetic and comprises a 1000× 1000 diagonal kernel
matrix with exponentially decaying diagonal elements.
Figure 1 displays the log-eigenvalues for each dataset.

On each dataset, we perform the Nyström approxima-
tion with three different sampling schemes: stochastic
adaptive, greedy adaptive, and uniform. The stochastic
adaptive sampling technique is a simplified version of
the scheme used in Deshpande et al. (2006), where,
on each iteration of landmark selection, we update
E = L − L̃ and then sample landmarks with prob-
abilities proportional to E2

ii. In the greedy scheme,

1http://archive.ics.uci.edu/ml/
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Figure 1: The first 600 log-eigenvalues for each dataset.

we perform a similar update, but always choose the
landmarks with the maximum diagonal value Eii. Fi-
nally, for the uniform method, we simply sample the
landmarks uniformly without replacement.

In Figure 2 (top), we plot log ||L− L̃||2 for each dataset
as a function of the number of landmarks sampled.
For the MNIST data all sampling algorithms initially
perform equally well, but uniform sampling becomes
relatively worse after about 550 landmarks are sam-
pled. For the Abalone data the adaptive methods
perform much better than uniform sampling over the
entire range of sampled landmarks. This phenomenon
is perhaps explained by the analysis of Talwalkar and
Rostamizadeh (2010), which suggests that uniform
sampling works well for the MNIST data due to its rel-
atively low coherence (µ(L) = 0.5

√
N), while perform-

ing poorly on the higher-coherence Abalone dataset
(µ(L) = 0.8

√
N). For both of the UCI datasets, the

stochastic and greedy adaptive methods perform simi-
larly. However, for our artificial dataset it is easy to
see that the greedy adaptive scheme is optimal since it
chooses the top remaining eigenvalues in each iteration.

In Figure 2 (bottom), we plot log ||P − P̃ ||1 for k = 10
(estimated by sampling), as well as the theoretical
bounds from Section 3. The bounds track the ac-
tual variational error closely for both the MNIST and
Abalone datasets. For the artificial dataset uniform
sampling can do arbitrarily poorly, so we see looser
bounds in this case. We note that the variational dis-
tance correlates strongly with the spectral norm error
for each dataset.

4.1 Related methods

The Nystöm technique is, of course, not the only possi-
ble means of finding low-rank kernel approximations.
One alternative for shift-invariant kernels is random
Fourier features (RFFs), which were recently proposed
by Rahimi and Recht (2007). RFFs map each item
onto a random direction drawn from the Fourier trans-
form of the kernel function; this results in a uniform
approximation of the kernel matrix. In practice, how-
ever, reasonable RFF approximations seem to require

http://archive.ics.uci.edu/ml/
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Figure 2: Error of Nyström approximations. Top: log(‖L− L̃‖2) as a function of number of landmarks sampled.
Bottom: log(‖P − P̃‖1) as a function of number of landmarks sampled. The dashed lines show the bounds derived
in Sec 3. From left to right, the datasets used are MNIST, Abalone and Artificial.
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Figure 3: Error of Nyström and random Fourier fea-
tures approximations on Abalone data: log(‖P − P̃‖1)
as a function of the number of landmarks or random
features sampled.

a large number of random features, which can reduce
the computational benefits of this technique.

We performed empirical comparisons between the
Nyström methods and random Fourier features (RFFs)
by approximating DPPs on the Abalone dataset. While
RFFs generally match or outperform uniform sam-
pling of Nyström landmarks, they result in significantly
higher error compared to the adaptive versions, espe-
cially when there is high correlation between items, as
shown in Figure 3. These results are consistent with
those previously reported for kernel learning (Yang
et al., 2012), where the Nyström method was shown
to perform significantly better in the presence of large
eigengaps. We provide a more detailed empirical com-
parison with RFFs in the supplementary material.

5 Experiments

Finally, we demonstrate the Nyström approximation on
a motion summarization task that is too large to permit
tractable inference in the original DPP. As input, we
are given a series of motion capture recordings, each
of which depicts human subjects performing motions
related to a particular activity, such as dancing or play-
ing basketball. In order to aid browsing and retrieval of
these recordings in the future, we would like to choose,
from each recording, a small number of frames that
summarize its motions in a visually intuitive way. Since
a good summary should contain a diverse set of frames,
a DPP is a natural model for this task.

We obtained test recordings from the CMU motion
capture database2, which offers motion captures of
over 100 subjects performing a variety of actions. Each
capture involves 31 sensors attached to the subject’s
body and sampled 120 times per second. For each of
nine activity categories—basketball, boxing, dancing,
exercise, jumping, martial arts, playground, running,
and soccer—we made a large input recording by con-
catenating all available captures in that category. On
average, the resulting recordings are about N = 24,000
frames long (min 3,358; max 56,601). At this scale,
storage of a full N ×N DPP kernel matrix would be
highly impractical (requiring up to 25GB of memory),
and O(N3) SVD would be prohibitively expensive.

In order to model the summarization problem as a DPP,
we designed a simple kernel to measure the similarity
between pairs of poses recorded in different frames. We
first computed the variance for the location of each

2http://mocap.cs.cmu.edu/

http://mocap.cs.cmu.edu/
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Figure 4: A sample pair of frame sets for the activity basketball. The top set is chosen randomly, while the
bottom is sampled from the Nyström-approximated DPP.

sensor for each activity; this allowed us to tailor the
kernel to the specific motion being summarized. For
instance, we might expect a high variance for foot
locations in dancing, and a relatively smaller variance
in boxing. We then used these variance measurements
to specify a Gaussian kernel over the position of each
sensor, and finally combined the Gaussian kernels with
a set of weights chosen manually to approximately
reflect the importance of each sensor location to human
judgments of pose similarity. Specifically, for poses
A = (a1,a2, . . . ,a31) and B = (b1, b2, . . . , b31), where
a1 is the three dimensional location of the first sensor
in pose A, etc., the kernel value is given by

L(A,B) =

31∑
i=1

wi exp

(
−‖ai − bi‖22

2σ2
i

)
, (31)

where σ2
i is the variance measured for sensor i, and

w = (w1, w2, . . . , w31) is the importance weight vector.
We chose a weight of 1 for the head, wrists, and ankles,
a weight of 0.5 for the elbows and knees, and a weight
of 0 for the remaining 22 sensors.

This kind of spatial kernel is natural for this task,
where the items have inherent geometric relationships.
However, because the feature representation is infinite-
dimensional, it does not readily admit use of the dual
methods of Kulesza and Taskar (2010). Instead, we
applied the stochastic adaptive Nyström approximation
developed above, sampling a total of 200 landmark
frames from each recording in 20 iterations (10 frames
per iteration), bringing the intractable task of sampling
from the high dimensional DPP down to an easily
manageable size: sampling a set of ten summary frames
from the longest recording took less than one second.

Of course, this speedup naturally comes at some ap-
proximation cost. In order to evaluate empirically
whether the Nyström samples retained the advantages
of the original DPP, which is too expensive for direct
comparison, we performed a user study. Each subject
in the study was shown, for each of the original nine
recordings, a set of ten poses (rendered graphically)
sampled from the approximated DPP model alongside
a set of ten poses sampled uniformly at random (see

Evaluation measure % DPP % Random
Quality 66.7 33.3
Diversity 64.8 35.2
Overall 67.3 32.7

Table 1: The percentage of subjects choosing each
method in a user study of motion capture summaries.

Figure 4). We asked the subjects to evaluate the two
pose sets with respect to the motion capture recording,
which was provided in the form of a rendered video.
The subjects chose the set they felt better represented
the characteristic poses from the video (quality), the
set they felt was more diverse, and the set they felt
made the better overall summary. The order of the two
sets was randomized, and the samples were different
for each user. 18 subjects completed the study, for a
total of 162 responses to each question.

The results of the user study are shown in Table 1.
Overall, the subjects felt that the samples from the
Nyström-approximated DPP were significantly better
on all three measures, p < 0.001.

6 Conclusion

The Nyström approximation is an appealing technique
for managing the otherwise intractable task of sampling
from high-dimensional DPPs. We showed that this
appeal is theoretical as well as practical: we proved
upper bounds for the variational error of Nyström-
approximated DPPs and presented empirical results to
validate them. We also demonstrated that Nyström-
approximated DPPs can be usefully applied to the task
of summarizing motion capture recordings. Future
work includes incorporating the structure of the kernel
matrix to derive potentially tighter bounds.
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A Appendix-Supplementary Material

A.1 Proofs to Theorem 5 and Theorem 6

Lemma 4. Let ek denote the kth elementary symmetric polynomial of L:

ek(λ1, . . . , λN ) =
∑
|J|=k

∏
n∈J

λn , (32)

and
λ̂i = max

{
λi+(m−r), λi − ‖L− L̃‖2

}
, (33)

where m is the rank of L and r is the rank of L̃. Then

ek(λ1, . . . , λN ) ≥ ek(λ̃1, . . . , λ̃N ) ≥ ek(λ̂1, . . . , λ̂N ) . (34)

Proof.

ek(λ1, . . . , λN ) =
∑
|J|=k

∏
n∈J

λn ≥
∑
|J|=k

∏
n∈J

λ̃n = ek(λ̃1, . . . , λ̃N ) ,

by Corollary 1.

On the other hand,

ek(λ̃1, . . . , λ̃N ) =
∑
|J|=k

∏
n∈J

λ̃n ≥
∑
|J|=k

∏
n∈J

λ̂n = ek(λ̂1, . . . , λ̂N ) ,

by Corollary 1 and Corollary 2.

Since

PkL(A) =
det(LA)∑

|A′|=k det(LA′)
=

det(LA)∑
|J|=k

∏
n∈J λn

=
det(LA)

ek(λ1, . . . , λN )
, (35)

using Lemma 4, we can now prove Theorem 3 and Theorem 4.

Proof of Theorem 3.

|PkA − P̃kA| =

[
det(L̃A)

ek(λ̃1, . . . , λ̃N )
− det(LA)

ek(λ1, . . . , λN )

]
= PkA

[
ek(λ1, . . . , λN )

ek(λ̃1, . . . , λ̃N )
− 1

]
≤ PkA

[
ek(λ1, . . . , λN )

ek(λ̂1, . . . , λ̂N )
− 1

]
,

where the last inequality follows from Lemma 4.

Proof of Theorem 4.

P̃kA − PkA = PkA

[
ek(λ1, . . . , λN ) det(L̃A)

ek(λ̃1, . . . , λ̃N ) det(LA)
− 1

]
= PkA

[(
ek(λ1, . . . , λN )

ek(λ̃1, . . . , λ̃N )

)(∏k
i=1 λ̃

A
i∏k

i=1 λ
A
i

)
− 1

]
.

Here λ̃A1 ,≥, . . . ,≥ λ̃Ak are the eigenvalues of L̃A. Now note that LA = L̃A + EA. Since E is positive semidefinite,

it follows that EA is also positive semidefinite. Thus by Corollary 1, we have λAi ≥ λ̃Ai and so

P̃kA − PkA ≤ PkA
[
ek(λ1, . . . , λN )

ek(λ̃1, . . . , λ̃N )
− 1

]
≤ PkA

[
ek(λ1, . . . , λN )

ek(λ̂1, . . . , λ̂N )
− 1

]
,

where the last inequality follows from Lemma 4.

On the other hand,

PkA − P̃kA = PkA

[
1−

(
ek(λ1, . . . , λN )

ek(λ̃1, . . . , λ̃N )

)(∏k
i=1 λ̃

A
i∏k

i=1 λ
A
i

)]
. (36)
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By Corrolary 2,

λ̃Ai ≥ λAi − ξA1 ≥ λAi − ξ1 = λAi − ‖L− L̃‖2 . (37)

We also note that λ̃Ai ≥ 0. Since ek(λ1, . . . , λN ) ≥ ek(λ̃1, . . . , λ̃N ) by Lemma 4, we have

PkA − P̃kA ≤ PkA

[
1−

∏k
i=1 λ̂

A
i∏k

i=1 λ
A
i

]
. (38)

The theorem follows by combining the two inequalities.

A.2 Empirical Comparisons to Random Fourier Features

In cases where the kernel matrix L is generated from a shift-invariant kernel function k(x,y) = k(x − y), we
can construct a low-rank approximation using random Fourier features (RFFs) (Rahimi and Recht, 2007). This
involves mapping each data point x ∈ Rd onto a random direction ω drawn from the Fourier transform of the
kernel function. In particular, we draw ω ∼ p(ω), where

p(ω) =

∫
Rd

k(∆) exp(−iω>∆)d∆ , (39)

draw b uniformly from [0, 2π], and set zω(x) =
√

2 cos(ω>x + b). It can be shown then that zω(x)zω(y) is an
unbiased estimator of k(x− y). Note that the shift-invariant property of the kernel function is crucial to ensure
that p(ω) is a valid probability distribution, due to Bochner’s Theorem. The variance of the estimate can be
improved by drawing D random direction, ω1, . . . ,ωD ∼ p(ω) and estimating the kernel function with k(x− y)

as 1
D

∑D
j=1 zωj

(x)zωj
(y).

To use RFFs for approximating DPP kernel matrices, we assume that the matrix L is generated from a shift-
invariant kernel function, so that if xi is the vector representing item i then

Lij = k(xi − xj) . (40)

We construct a D ×N matrix B with

Bij =
1√
D
zωi

(xj) i = 1, . . . , D, j = 1, . . . , N . (41)

An unbiased estimator of the kernel matrix L is now given by L̃RFF = B>B. Furthermore, note that an
approximation to the dual kernel matrix C is given by C̃RFF = BB>; this allows use of the sampling algorithm
given in Algorithm 2.

We apply the RFF approximation method to the Abalone data from Section 4. We use a Gaussian RBF kernel,

Lij = exp(−‖xi − xj‖2

σ2
) i, j = 1, . . . , 1000 , (42)

with σ2 taking values 0.1,1, and 10. In this case, the Fourier transform of the kernel function, p(ω) is also a
multivariate Gaussian.

In Figure 5 we plot the empirically estimated log(‖Pk − P̃k‖1) for k = 10. While RFFs compare favorably to
the uniform random sampling of landmarks, their performance is significantly worse than that of the adaptive
Nyström methods, especially in the case where there are strong correlations between items (σ2 = 1 and 10). In
the extreme case where there is little to no correlation, the Nyström methods suffer because a small sample of
landmarks cannot reconstruct the other items accurately. Yang et al. (2012) have previously demonstrated that,
in kernel learning tasks, the Nyström methods perform favorably compared to RFFs in cases where there are
large eigengaps in the kernel matrix. The plot of the eigenvalues in Figure 6 suggests that a similar result holds
for approximating DPPs as well. In practice, for kernel learning tasks, the RFF approach typically requires more
features than the number of landmarks needed for Nystroöm methods. However, due the fact that sampling from
a DPP requires O(D3) time, we are constrained by the number of landmarks that can be used.
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Figure 5: Error of Nyström and random Fourier features approximations: log(‖P − P̃‖1) as a function of the
number of landmarks sampled/random features used. From left to right, the values of σ2 are 0.1, 1, and 10.
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Figure 6: The log-eigenvalues of RBF kernel applied on the Abalone datset.

A.3 Sample User Study

Figure 7 shows a sample screen from our user study. Each subject completed four questions for each of the nine
pairs of sets they saw (one pair for each of the nine activities). There was no significant correlation between a
user’s preference for the DPP set and their familiarity with the activity.

Figure 8 shows motion capture summaries sampled from the Nyström-approximated kDPP (k=10).
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Figure 7: Sample screen from the user study.
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Figure 8: DPP samples (k = 10) for each activity.


