
Representation Results & Algorithms for
Deep Feedforward Networks

Jacob Abernethy Alex Kulesza Matus Telgarsky
University of Michigan, Ann Arbor

{jabernet,kulesza,mtelgars}@umich.edu

Abstract

Despite the fact that parameter optimization for deep feedforward neural networks
is highly non-convex, generic gradient methods remain the dominant approach in
practice. In part, this is because our understanding of the functions represented by
such networks (as compared with simpler flat networks) is still quite limited. This
note presents a new representation result for deep neural networks, establishing
a family of classification problems for which any flat network requires exponen-
tially more nodes than an appropriately designed deep network. It then develops
a layer-wise training algorithm that is able to efficiently learn these compact deep
networks from labeled data. In general, the algorithm recovers a perfect classifier
whenever the data has no noise, and it performs well on benchmark datasets.

1 Overview

A neural network is a function whose evaluation is defined by a directed graph, as follows. Root
nodes compute x 7→ σ(w0 + 〈w, x〉), where x is the input to the network and σ : R → R is a
nonlinear function, for instance the ReLU (Rectified Linear Unit) σR(z) = max{0, z}. Internal
nodes perform the same computation, but use the collective output of their parents in place of the
raw inputs x. The set of all nodes at a given depth in the graph is called a layer. The set of functions
obtained by varying all of the w0 and w parameters (which need not be the same from node to node)
over networks with l layers, each with at most m nodes, gives the function class N (σ;m, l).

The representation power of N (σ;m, l) will be measured via the classification error Rz. Namely,
given a function f : Rd → R, let f̃ : Rd → {0, 1} denote the corresponding classifier f̃(x) :=
1[f(x) ≥ 1/2], and additionally given a sequence of points ((xi, yi))

n
i=1 with xi ∈ Rd and yi ∈

{0, 1}, defineRz(f) := n−1
∑
i 1[f̃(xi) 6= yi].

A function f : R→ R is said to be t-sawtooth if there exists a partition of R into at most t intervals
such that f is affine within each; e.g., σR is 2-sawtooth. The core representation result is as follows.
Theorem 1.1 (Informal representation result). Given any integer k, there exists a set of n := 2k + 1
points ((xi, yi))

n
i=1 so that for any t-sawtooth σ : R→ R, any number of layers l, and any number

of nodes per layer m with mt ≤ 2(k−2)/l,

min
f∈N (σR;2,2k)

Rz(f) = 0 and min
g∈N (σ;m,l)

Rz(g) ≥ 1

6
.

Moreover, the perfect classifier in N (σR; 2, 2k) can be taken to be k repetitions of a constant size
recurrent network; namely, a network with 3 nodes in 2 layers composed with itself k − 1 times.

In other words, we can construct data sets for which a network of depth 2k gives zero error, but any
flat network has error at least 1/6 unless it contains an exponential number of nodes. This result
and its proof will be discussed in Section 2. It mirrors circuit complexity results which state that
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the parity function on d bits requires exponential size constant-depth circuits [1], and similar results
for sum-product networks, which are neural networks with summation and product nodes [2]. The
result here for standard feedforward networks is to some extent folklore, however neither proof nor
precise statement have ever been provided, the only existing results providing that flat networks of
arbitrary size may approximate continuous functions [3].

Of course, exotic functions representable by neural networks are irrelevant if they cannot be tractably
found from data, and the training loss for neural networks is highly non-convex. Thus, as a com-
panion to the representation result, Section 3 discusses learning algorithm whose guarantees may be
summarized as follows.
Theorem 1.2 (Informal algorithmic guarantee). There exists a layer-wise algorithm which, given
the n points from Theorem 1.1 finds f ∈ N (σR; 2, 2k + 1) with Rz(f) = 0. More generally, given
any set of points ((xi, yi))

n
i=1 where xi = xj implies yi = yj , it learns a network g withRz(g) = 0.

The first part of the result guarantees learning a compact network over a restrictive class of functions,
while the second shows that the algorithm learns more generally given a sufficiently large network.
Algorithms of the second type are known when networks are shallow [4], but the result here concerns
deep networks where additional layers cannot access the input variables directly. Even so, this result
is stylized, disallowing label noise and guaranteeing general learning only for large networks, thus
Section 3 also provides an empirical evaluation. All proofs can be found in the full version1.

2 Representation results

The upper and lower bound follow from a simple intuition: adding piecewise affine functions to-
gether grows the number of “bumps” only linearly, whereas composing them increases the number
of bumps multiplicatively.

0
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11/2

Figure 1: The 3-ap.

With this in mind, let positive integer k be given, and
consider the binary classification problem at right; hence-
forth, call this problem k-ap (k-alternating-points), and
note that it consists of 2k + 1 evenly spaced points whose
labels alternate.

First consider the lower bound in Theorem 1.1. As shown
in Appendix A.1, given functions σ1 : R → R and σ2 : R → R which are respectively t1- and
t2-sawtooth, σ1 + σ2 is (t1 + t2 − 1)-sawtooth and σ1 ◦ σ2 is t1t2-sawtooth. By induction over the
layers of a neural network, it follows that every element of N (σ;m, l) is (tm)l-sawtooth provided
that σ is t-sawtooth.

To complete the lower bound, a counting argument establishes that any t′-sawtooth func-
tion f must make many errors on the k-ap when t′ < 2k−2; the counting argument, pre-
sented in Appendix A.1, shows that many of the t′ intervals defining f receive multiple
points, a large fraction of which cannot be classified correctly due to the alternating labels.
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Figure 2: fm and f2m.

Lemma 2.1. Let ((xi, yi))
n
i=1 be given according to the

k-ap, with n := 2k + 1. Then every t′-sawtooth function
f : R→ R satisfiesRz(f) ≥ (n− 2t′)/(3n).

For the upper bound, consider the mirror map fm : R →
R depicted in Figure 2, defined as

fm(x) :=


2x when 0 ≤ x ≤ 1/2,

2(1− x) when 1/2 < x ≤ 1,

0 otherwise.

Note that fm ∈ N (σR; 2, 2); for instance, fm(x) =
σR(2σR(x) − 4σR(x − 1/2)). The upper bounds will use
fkm ∈ N (σR; 2, 2k), where fkm denotes fm composed with
itself k − 1 times.

1Full version is at http://cseweb.ucsd.edu/˜mtelgars/manuscripts/nc15.pdf.
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As shown in Appendix A.2, each additional composition with fm doubles the frequency and number
of peaks, and consequently fkm precisely weaves through the points of the k-ap, achieving zero
classification error.

3 Algorithm

Consider several possible approaches to learning compact deep networks. First, one could try to find
succinct representations by minimizing a loss function directly using gradent methods, but there is
little hope of this being tractable due to non-convexity. A second option is the popular approach
of unsupervised pre-training, where a gradient method is initialized using parameters determined
from unlabeled data; however, this fails on the k-ap, which, stripped of labels, consists only of uni-
formly spaced points. A third approach, followed here, is supervised pre-training, which initializes
parameters in a layer-wise fashion using labeled data.

The supervised pre-training method in Algorithm 1 carries the name GADGETRON since it optimizes
small groups of layers at a time, thus searching for gadgets (e.g., the 2-layer gadget fm from the
previous section). In order to instantiate the GADGETRON, a gadget class (connectivity pattern for
a collection of layers) must be specified, as well as an objective function Q. It is tempting at first
to use classification loss for Q, however this fails even at finding the first mirror map fm given the
k-ap: since the optimal zero-one loss is attained by many different translations and scalings of the
fm, loss minimization will not generally choose the unaltered fm.

0 11/2

↓

0 11/2

↓

0 11/2

Figure 3: fm applied to the k-ap.

Before describing the choice of Q and its corresponding
guarantees, it is useful to sketch desirable properties by
studying how fm operates upon the k-ap. As depicted
at right, applying fm to the k-ap reflects the points upon
themselves, producing a weighted (k − 1)-ap where all
new points with x < 1 are duplicated (with matching
labels). One way to induce this behavior is by trying to
reduce the number of regions to be labeled 0 and 1. Of
course, as stated, this is a nonparametric quantity which
is difficult to estimate, but Q1 and Q2, described below,
give a simple surrogate to this approach.

3.1 Guarantees

It is convenient to refine the notation N (σ;m, l) to N (σ; (m1,m2, . . . ,ml)), meaning the class of
network functions where layer 1 has at most m1 nodes, layer 2 has at most m2 nodes, and so on.

To simplify the analysis, the two guarantees use different but related objective functions Q1 and Q2.
Each is defined over maps of the form F : S → [0, 1]d2 , where S ⊆ Rd1 is the data; for instance, Q
can be applied to elements of {f ∈ N (σ; (d1, d2)) : F (x) ∈ [0, 1]d2 when x ∈ S}. Both objective
functions will be stated only in terms of separating pairs of examples with differing labels, thus the
restriction of the image of the maps to [0, 1]d2 is essential to prevent blow-up.

Algorithm 1 Gadgetron.

input Objective function Q, gadget classes (Gj)lj=1, data S.
1: Initial identity map F0(x) = x.
2: for j = 1, 2, . . . , l: do
3: Choose gadget Lj ∈ Gj by minimization of Q on mapped data Fj−1(S):

Q(Lj ◦ Fj−1;S) = min
L∈Gj

Q(L ◦ Fj−1;S).

4: Update mapping: Fj := Lj ◦ Fj−1.
5: end for
6: return Final mapping Fl.
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The first guarantee, showing that GADGETRON can fit the k-ap with N (σR; 2, 2k + 1), uses

Q1(F ;S) := max
(x,y)∈S
(x′,y′)∈S
y 6=y′

1

‖F (x)− F (x′)‖1
.

Notice thatQ1 tries to place pockets of points with differing labels as far apart as possible, and more-
over to collapse points of the same label, since this gives more room to spread out the differently-
labeled points. Indeed, the optimum (over all functions) is to place all positive points in one corner,
and all negative points in the opposite corner. (Note that this objective is always ∞ if there exist
(x, y) and (x′, y′) with x = x′ and y = y′; the assumptions rule this case out, but the experiments
will circumvent this by adding a tiny positive constant to the denominator.) Using Q1 gives gives
the first part of Theorem 1.2, stated in more detail as follows.
Lemma 3.1. Let positive integer k be given. Suppose the GADGETRON is run with gadget class
N (σR; (2, 1)), objective functionQ1, and data S matching the k-ap. Then after k epochs, a function
f ∈ N (σR; 2, 2k) is output with eitherRz(f) = 0 orRz(1− f) = 0.

In order to prove the second part of Theorem 1.2, a slightly more relaxed objective is used:

Q2(F ;S) :=
1

|S|
∑

(x,y)∈S

max
(x′,y′)∈S
y 6=y′

1

‖F (x)− F (x′)‖1
.

The advantage of Q2 over Q1 is that moving around any points can improve the cost, not just those
attaining the minimum in Q1. This suffices to prove the second part of Theorem 1.2 by showing
that in each epoch, GADGETRON always can choose to construct one of two gadgets which will
guarantee a sufficient decrease in cost. These gadgets are complicated geometric objects, which
imposes the unpleasant size bound O((4d)d).
Lemma 3.2. Suppose the GADGETRON is run with gadget class N (σR;O((4d)d), 4), objective
function Q2, and any set of points S with y = y′ whenever x = x′. Then the final mapping f output
after ln(dQ2(F0;S))/ ln(2) epochs provides a linearly separable set of points.

3.2 Experiments

The full experimental setup is described in Appendix C. Networks were trained with a standard
gradient method, and three initializations were considered: a standard random initialization [5, Sec-
tion 4.6, “Initializing the Weights”], a standard unsupervised initialization [6], and GADGETRON.
Each method was asked to produce 3-layer and 8-layer networks on each of 8 standard datasets; this
process was repeated 5 times, and the approach with the best validation error minus the error of a
baseline linear model is reported in Figure 4.
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Figure 4: Error reduction versus a linear model for various networks, datasets, and initializations.
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A Proof of Theorem 1.1

This section will first establish lower and upper bounds in some generality, whereby Theorem 1.1
will follow after some algebra.

A.1 Proof of lower bound

As stated in the body, the lower bound first shows that N (σ;m, l) is (tm)l-sawtooth whenever σ
is t-sawtooth, and thereafter completes the proof via a counting argument, reasoning that sawtooth
functions can not do well on the k-ap.

In order to prove the sawtooth property of N (σ;m, l), first note how sawtooths grow in complexity
when summed or composed.

Lemma A.1. Let f : R → R and g : R → R be respectively k- and l-sawtooth. Then f + g is
(k + l − 1)-sawtooth, and f ◦ g is kl-sawtooth.

Proof. Let If denote the partition of R corresponding to f , and Ig denote the partition of R corre-
sponding to g.

First consider f + g, and let Lf ∈ If and Lg ∈ Ig respectively denote the leftmost intervals in the
definition of f and g; of course, f + g has a single slope along Lf ∩ Lg . Thereafter, the slope of
f + g can only change when it changes in either f or g. There are (k − 1) + (l − 1) such changes,
thus combined with the initial interval Lf ∩ Lg , f + g is (k + l − 1)-sawtooth.

Now consider f ◦ g, and in particular consider the image f(g(Ug)) for some interval Ug ∈ Ig . g is
affine with a single slope along Ug , therefore f is being considered along a single unbroken interval
g(Ug). However, nothing prevents g(Ug) from hitting all the elements of If ; since this argument
holds for each Ug ∈ Ig , thus f ◦ g is (|If | · |Ig|)-sawtooth.

The sawtooth property of N (σ;m, l), now follows by induction.

Lemma A.2. If σ is t-sawtooth, then every f ∈ N (σ;m, l) with f : R→ R is (tm)l-sawtooth.

Proof. The proof proceeds by induction over layers, showing the output of each node in layer i
is (tm)i-sawtooth as a function of the neural network input. For the first layer, each node starts by
computing x 7→ w0+〈w, x〉, which is itself affine and thus 1-sawtooth, so the full node computation
x 7→ σ(w0 + 〈w, x〉) is t-sawtooth by Lemma A.1. Thereafter, the input to layer i with i > 1 is a
collection of functions (g1, . . . , gm′) with m′ ≤ m and gj being (tm)i−1-sawtooth by the inductive
hypothesis; consequently, x 7→ w0 +

∑
j wjgj(x) is m(tm)i−1-sawtooth by Lemma A.1, whereby

applying σ yields a (tm)i-sawtooth function (once again by Lemma A.1).

The lower bound now follows via a counting argument, the statement appearing as Lemma 2.1 in
the body.

Proof of Lemma 2.1. Recall the notation f̃(x) := 1[f(x) ≥ 1/2], whereby Rz(f) :=

n−1
∑
i 1[yi 6= f̃(xi)]. Since f is piecewise monotonic with a corresponding partition R hav-

ing at most t pieces, then f has at most 2t − 1 crossings of 1/2: at most one within each interval
of the partition, and at most 1 at the right endpoint of all but the last interval. Consequently, f̃ is
piecewise constant, where the corresponding partition of R is into at most 2t intervals. This means
n points with alternating labels must land in 2t buckets, thus the total number of points landing
in buckets with at least three points is at least n − 4t. Since buckets are intervals and signs must
alternate within any such interval, at least a third of the points in any of these buckets are labeled
incorrectly by f̃ .

A.2 Proof of upper bound

To assess the effect of the post-composition fm ◦ g for any g : R → R, note that fm ◦ g is 2g(x)
whenever g(x) ∈ [0, 1/2], and 2(1 − g(x)) whenever g(x) ∈ (1/2, 1]. Visually, this has the effect
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of reflecting (or folding) the graph of g around the horizontal line through 1/2 and then rescaling by
2. Applying this reasoning to fkm leads to f2m and f3m in Figure 2, whose peaks and troughs match
the 22-ap and 23-ap, and moreover have the form of a piecewise affine approximations to sinusoids;
indeed, it was suggested before, by Bengio and LeCun [7], that Fourier transforms are efficiently
represented with deep networks.

These compositions may be written as follows.

Lemma A.3. Let real x ∈ [0, 1] and positive integer k be given, and choose the unique nonnegative
integer ik ∈ {0, . . . , 2k−1} and real xk ∈ [0, 1) so that x = (ik + xk)21−k. Then

fkm(x) =

{
2xk when 0 ≤ xk ≤ 1/2,

2(1− xk) when 1/2 < xk < 1.

In order to prove this form and develop a better understanding of fm, consider its pre-composition
behavior g ◦ fm for any g : R → R. Now, (g ◦ fm)(x) = g(2x) whenever x ∈ [0, 1/2], but
(g◦fm)(x) = g(2−2x) when x ∈ (1/2, 1]; whereas post-composition reflects around the horizontal
line at 1/2 and then scales vertically by 2, pre-composition first scales horizontally by 1/2 and then
reflects around the vertical line at 1/2, providing a condensed mirror image and motivating the name
mirror map.

Proof of Lemma A.3. The proof proceeds by induction on the number of compositions l. When l =
1, there is nothing to show. For the inductive step, the mirroring property of pre-composition with
fm combined with the symmetry of f lm (by the inductive hypothesis) implies that every x ∈ [0, 1/2]
satisfies

(f lm ◦ f)(x) = (f lm ◦ f)(1− x) = (f lm ◦ f)(x+ 1/2).

Consequently, it suffices to consider x ∈ [0, 1/2], which by the mirroring property means (f lm ◦
fm)(x) = f lm(2x). Since the unique nonnegative integer il+1 and real xl+1 ∈ [0, 1) satisfy 2x =
2(il+1 + xl+1)2−l−1 = (il+1 + xl+1)2−l, the inductive hypothesis applied to 2x grants

(f lm ◦ f)(x) = f lm(2x) =

{
2xl+1 when 0 ≤ xl+1 ≤ 1/2,

2(1− xl+1) when 1/2 < xl+1 < 1,

which completes the proof.

A.3 Proof of Theorem 1.1

With both the lower and upper bounds in place, the proof of Theorem 1.1 is immediate.

Proof of Theorem 1.1. Lemma A.3 gives the desired upper bound; it only remains to massage the
lower bound.

Fix any f ∈ N (σ;m, l). By Lemma A.2, it is (tm)l-sawtooth; thus combining the condition
mt ≤ 2(k−2)/l with Lemma 2.1 gives

(2k + 1)− 2(tm)l

3(2k + 1)
≥ 1

3
− (tm)l2−k

(
2

3

)
≥ 1

3
− 2k−22−k

(
2

3

)
=

1

3
− 1

6
.

B Proof of Theorem 1.2

Theorem 1.2 is proved by first establishing the guarantee for the k-ap, and then separately for
datasets S with at most one label for each distinct input point.

B.1 Fitting the k-ap

Proof sketch of Lemma 3.1. This proof will establish by induction on the number of gadget levels
that the mapping Fj produced after composing j gadgets maps S, the k-ap, to a positively reweighted
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(k−j)-ap, possibly with flipped labels. Consequently, after k gadgets, there are just two reweighted
points, so either Fk or its negation give a perfect classification. (The proof will not show that fkm is
recovered; indeed, each gadget will be equivalent along [0, 1] to either fm or 1− fm.)

Proceeding with the proof, there is nothing to show in the base case F0, thus consider Fj with j ≥ 1.
This inductive step will first establish that the gadget class is a subset of the class of functions which
is piecewise monotonic in at most two pieces, and from there show that fm and 1− fm are the only
optima.

To establish the structural property on the gadget class N (σR; (2, 1)), it will be necessary to reason
about sawtooth functions in a more refined way than in Lemma A.1. First note that z 7→ σR(w0+wz)
is a translation and scaling of σR, meaning it is continuous, and either a constant function or 2-
sawtooth with slope 0 in one piece. Next note that a linear combination of any two such functions
is either monotonic, or it is piecewise monotonic in 2 pieces (meaning there exists some z0 ∈ R
such that it is monotonic to the left of z0, and monotonic to the right of z0). The case that either
function is constant is immediate, thus suppose neither is constant. First consider the case that each
function has a sequence of slopes (0, a) and (0, b); thus any linear combination has slope sequence
(0, c, d) for some numbers c and d, which is thus piecewise monotone in at most 2 pieces. Without
loss of generality, the only remaining case is that the slope sequences are (0, a) and (b, 0), the other
cases being symmetric. Then given linear combination weights (w1, w2), the slope sequence of the
resulting 3-sawtooth function is either (w2b, 0, w1a) or (w2b, w2b + w1a,w1a). The first case is
immediately piecewise monotonic in at most 2 pieces. In the second case, if w1b and w2a have the
same sign, thus w1b + w2a shares this sign and the function is simply monotonic; otherwise their
signs differ, but then w1a+w2b matches one of these signs, so the function is monotonic in at most
2 pieces.

Now consider N (σR; (2, 1)). Since this is a σR applied to a function which is piecewise monotonic
in at most two pieces, the output is again piecewise monotonic in at most two pieces, since the σR

simply replaces anything below 0 with 0, which leaves monotonicity properties unchanged.

Finally consider optimizing Q1 over all functions F : R → [0, 1] which are piecewise monotonic
in at most two pieces, where by induction the set of points is the j′-ap with j′ = k − j, perhaps
positively reweighted and with flipped signs; In particular, the distance between any pair of points
is 2−j

′
. Now first consider the case of a monotonic function. Then if any pair of consecutive

points are mapped more than 2−j
′

apart, then some other consecutive points are mapped less than
2−j

′
apart; but the identity mapping is feasible and achieves exactly 2−j

′
error. Now consider the

case of a function which is piecewise monotonic in at most two pieces, and first consider the piece
occupying more of [0, 1], breaking ties arbitrarily. If m is the number of points in this region, then
the preceding reasoning grants that the distance between them is at least 1/(m− 1). Meanwhile, if
the shorter segment does anything other than mapping points onto the image of the other segment,
then the objective function only worsens. Consequently, the optimal objective is obtained by giving
one segment 2j

′−1 + 1 distinct points and the other 2j
′−1 distinct points, giving objective value

2−j
′+1. As the only 3-sawtooth mappings with this structure are fm and 1− fm and moreover since

this objective is strictly smaller than the 1-monotonic case, it follows that either fm or 1 − fm are
chosen.

B.2 Fitting data with no label noise

Proof sketch of Lemma 3.2. For convenience, set n := |S|, τ := (1 + 1/(n(4d− 1)))/d, and define

φ(F ;S;x, y) := min
(x′,y′)∈S
y 6=y′

1

‖F (x)− F (x′)‖1
,

whereby Q2(F ;S) = n−1
∑

(x,y)∈S φ(F ;S;x, y).

First note that φ(F ;S;x, y) ≥ 1/d for any mapping F , since points are constrained to fall within
[0, 1]d, where the largest internal l1 distance is d, between two corners. As a consequence of this,
any mapping F : Rd → [0, 1]d with Q2(F ;S) ≤ τ must linearly separate S. To see this, first note it
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(combined with φ ≥ 1/d) implies φ(F ;S;x, y) ≤ 1/(d−1/4) for every (x, y) ∈ S, since otherwise

Q2(F ;S) =
1

n

∑
(x,y)∈S

φ(F ;S;x, y) >
1

nd

(
(n− 1) +

d

d− 1/4

)

=
1

nd

(
(n− 1) +

d− 1/4 + 1/4

d− 1/4

)
=

1

d

(
1 +

1

n(4d− 1)

)
.

Now fix a pair (x, y) ∈ S, and let (x′, y′) ∈ S be any pair with y 6= y′, whereby ‖F (x)−F (x′)‖1 ≥
d−1/4, Consequently, there is some corner a ∈ {0, 1}d of the hypercube with ‖F (x)−a‖1 ≤ 1/4,
and an opposite corner b ∈ {0, 1}d (meaning a+b = (1, 1, . . . , 1)) with ‖F (x′)−b‖1 ≤ 1/4. Since
(x′, y′) ∈ S was arbitrary with y 6= y′, it holds that all points with label y′ reside within 1/4 of b,
and symmetrically all points with label y reside within 1/4 of a. In other words, the l1 balls of radius
d/4 centered at a and b respectively contain all points with labels y and y′ 6= y and are necessarily
non-intersecting since at opposite corners but with combined radii less than d (the l1 distance from
corner to corner), thus these balls can be separated by a hyperplane.

Consequently, it suffices to show the error drops below τ . To prove this, it will be shown that
Q(Fj+1;S) ≤ Q(Fj ;S)/2, whereby it follows that ln(Q(F0;S)/τ)/ ln(2) levels suffice to produce
a mapping which linearly separates S.

To this end, first note that no round maps two points of differing labels on top of each other, as this
would produce a cost of∞. Now fix any round j ≥ 1, meaning there is some mapping F := Fj−1
from the previous round with the property that x = x′ whenever y = y′. If Q2(F ;S) ≤ 1/(n(d −
1/4)), the proof is done; otherwise let (x̄, ȳ) ∈ S be a point with maximal φ(F ;S; x̄, ȳ), and set
φ̄ := φ(Fk−1;S; x̄, ȳ), whereby φ̄ ≥ Q2(F ;S) ≥ 1/(n(d − 1/4)). There are now two cases to
consider.

• Suppose φ̄−min(x,y)∈S φ(F ;S;x, y) ≥ Q2(F ;S)/2, and let (x′, y′) ∈ S be a pair attain-
ing the minimum, with φ′ := φ(F ;S;x′, y′), whereby

φ′ ≤ φ̄−Q2(F ;S)/2.

Since φ̄ is attained both at (x̄, ȳ) and at some (x′, 1 − ȳ) ∈ S, without loss of generality
ȳ = y′.

Now consider the effect of a gadget g which maps x̄ to x, and is an identity mapping for all
other points. Since points with disagreeing labels are guaranteed to be distinct, such a map
can be construct with O(d) nodes in 3 layers. As such,

Q2(Fj ;S) ≤ Q2(g ◦ F ;S) ≤ Q2(F ;S)− φ̄+ φ′ ≤ Q2(F ;S)/2.

• Now suppose the preceding case does not hold, which means every (x, y) ∈ S satisfies

φ(F ;S;x, y) ≤ φ̄ < Q2(F ;S)/2 + min
(x,y)∈S

φ(F ;S;x, y) ≤ 3φ̄/2.

Expanding the definition of φ, this means that every point (x′, y′) ∈ S with y′ 6= y satisfies
‖F (x) − F (x′)‖1 ≥ 2/(3φ̄). Since x and x′ were arbitrary points of differing labels, this
inequality holds in general for any two points with differing labels.

Now fix (x′′, 1− ȳ) ∈ S to denote any example which attains the minimum in the definition
of φ at point (x̄, ȳ), whereby ‖Fj(x̄)−Fj(x′′)‖1 = 1/φ̄. Set z := (x+x′′)/2, and consider
the l1 ball B of radius 3d/φ̄ centered at z. Since all distances between points of differing
labels are at least 3/(2φ̄), and due to the doubling dimension of l1 balls, we can cover this
larger ball withO((2d)d) balls of radius at most 3/(2φ̄) such that each ball contains points
with only a single label. Since an indicator for such an l1 ball can be constructed within
N (σR;O(d), 2), the mapping which takes all these purely-labeled balls and maps them to
two distinct purely labeled points is therefore within the gadget class N (σ;O(d(4d)d), 4).

There are now two cases to consider for these mapped points. The first case is that there
exists a diagonal line (parallel to a line connecting two corners of [0, 1]d) fully contained
within B ∩ [0, 1]d and having l1 length at least 6/φ̄; Then this line may be cut into three
pieces of length 2/φ̄ and the mapped points placed at the ends of the central segment
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while still being at least 2/φ̄ away from any other points not being mapped, meaning the
new error, after applying this mapping g (which is the identity map for points outside B),
satisfies

Q(Fj ;S) ≤ Q(g ◦ F ;S) ≤ Q(F ;S)− 2φ̄+ 2(φ̄/2) ≤ Q(F ;S)/2.

Now consider the other case, that the l1 ball of radius 3d/φ̄ centered at z, when intersected
with [0, 1]d, does not contain such a diagonal line of length 6/φ̄. But since ‖F (x̄) −
F (x′)‖1 = 1/φ̄ and B has radius 3d/φ̄, it follows that there is no diagonal of length 6/φ̄
only if B contains the entire cube [0, 1]d, meaning the above mapping g will map all of S
to two points in the corners and attain the optimal error 1/d.

B.3 Proof of Theorem 1.2

The results in Theorem 1.2 follow by Lemma 3.1 and Lemma 3.2, adding a single layer with a final
linear separator.

C Experimental setup

This section will specify the experimental setup in more detail.

First, the objective function was slightly different from Q1 and Q2 from the body; namely, it was

Q3(F ) :=
∑
(x,y)
(x′,y′)
y 6=y′

1

‖F (x)− F (x′)‖22 + ε
,

where ε = 10−6 was chosen without any tuning, and a barrier term was added to enforce Q3(S) ⊆
[0, 1]d2 .

Next, the body of the paper did not specify the network layouts. Here again, a simple rule was
chosen: given an input of size d, the first hidden layer is of size d/2, and all further hidden layers
have size d/4, the final (output) layer being a single node since all problems had univariate labels.

All datasets were scaled to lie within [0, 1]d. Some more detail on the datasets and their properties
may be found in Table 1.

Any implementation of GADGETRON must somehow search over a gadget class. As this is a non-
convex problem, the approach here was to try a few random restarts of a gradient descent variant
(AdaGrad), with mini-batches of size 64 to speed up training. The random restarts themselves were
small perturbations of an identity map, an idea which has been used elsewhere in the neural network
literature [8, 9].

For each (data set, algorithm, depth) triple, the algorithm was invoked five times, AdaGrad was
applied with a several different step sizes to tune the weights of the network via logistic regression

Dataset n s d

a9a 48841 13.8676 123
Abalone 4176 8 8

Covertype 581011 11.8789 54
EEG 14980 13.9901 14

IJCNN1 24995 13 22
Letter 20000 15.5807 16

MAGIC 19020 9.98728 10
Shuttle 43500 7.04984 9

Table 1: Basic statistics on the evaluation datasets. n is the number of examples, s is the average
number of nonzero features, and d is the total input dimension.
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(4 passes for the small datasets and 1 for the larger), and the progressive validation error was used
to select a best model amongst all these initialization and step size choices. Finally the classification
error on the testing set was reported for this selected model.

No regularization was used, partially in order to address concerns that a supervised method may be
more prone to overfitting [10], in contrast to unsupervised pre-training which has been argued to pro-
vide regularization [11]. Of course, as the datasets here are low-dimensional, a broader investigation
of the need for regularization is necessary.
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