
Structured Determinantal Point Processes

Alex Kulesza Ben Taskar
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

{kulesza,taskar}@cis.upenn.edu

Abstract

We present a novel probabilistic model for distributions over sets of structures—
for example, sets of sequences, trees, or graphs. The critical characteristic of our
model is a preference for diversity: sets containing dissimilar structures are more
likely. Our model is a marriage of structured probabilistic models, like Markov
random fields and context free grammars, with determinantal point processes,
which arise in quantum physics as models of particles with repulsive interactions.
We extend the determinantal point process model to handle an exponentially-sized
set of particles (structures) via a natural factorization of the model into parts. We
show how this factorization leads to tractable algorithms for exact inference, in-
cluding computing marginals, computing conditional probabilities, and sampling.
Our algorithms exploit a novel polynomially-sized dual representation of determi-
nantal point processes, and use message passing over a special semiring to com-
pute relevant quantities. We illustrate the advantages of the model on tracking and
articulated pose estimation problems.

1 Introduction

The need for distributions over sets of structures arises frequently in computer vision, computational
biology, and natural language processing. For example, in multiple target tracking, sets of structures
of interest are multiple object trajectories [6]. In gene finding, sets of structures of interest are
multiple proteins coded by a single gene via alternative splicing [13]. In machine translation, sets of
structures of interest are multiple interpretations or parses of a sentence in a different language [12].
Consider as a running example the problem of detecting and tracking several objects of the same
type (e.g., cars, people, faces) in a video, assuming the number of objects is not known a priori. We
would like a distribution over sets of trajectories that (1) includes sets of different cardinality and
(2) prefers sets of trajectories that are spread out in space-time, as objects are likely to be [11, 15].

Determinantal point processes [10] are attractive models for distributions over sets, because they
concisely capture probabilistic mutual exclusion between items via a kernel matrix that determines
which items are similar and therefore less likely to appear together. Intuitively, the model balances
the diversity of a set against the quality of the items it contains (for example, observation likelihood
of an object along the trajectory, or motion smoothness). Remarkably, algorithms for computing
certain marginal and conditional probabilities as well as sampling from this model are O(N3),
where N is total number of possible items, even though there are 2N possible subsets of a set
of size N [7, 1] .

The problem, however, is that in our setting the total number of possible trajectoriesN is exponential
in the number of time steps. More generally, we consider modeling distributions over sets of struc-
tures (e.g., sequences, trees, graphs) where the total number of possible structures is exponential.
Our structured determinatal point process model (SDPP) captures such distributions by combining
structured probabilistic models (e.g., a Markov random field to model individual trajectory quality)

1

DPP Independent

(a)

0 1
0

10

20
x 10

−3

Position
Step 0

P
ro

b
a

b
ili

ty

0 1
Position
Step 1

0 1
Position
Step 2

(b)

Figure 1: (a) A set of points in the plane drawn from a DPP (left), and the same number of
points sampled independently (right). (b) The first three steps of sampling a DPP on a set of one-
dimensional particle positions, from left to right. Red circles indicate already selected positions.
The DPP naturally reduces the probabilities for positions that are similar to those already selected.

with determinantal point processes. We introduce a natural factorization of the determinantal model
into parts (as in graphical models and grammars), and show that this factorization together with a
novel dual representation of the process enables tractable inference and sampling using message
passing algorithms over a special semiring. The contributions of this paper are: (1) introducing
SDPPs, (2) a concise dual representation of determinantal processes, (3) tractable message passing
algorithms for exact inference and sampling in SDPPs, (4) experimental validation on synthetic mo-
tion tracking and real-world pose detection problems. The paper is organized as follows: we present
background on determinantal processes in Section 2 and introduce our model in Section 3; we de-
velop inference and sampling algorithms in Section 4, and we describe experiments in Section 5.

2 Background: determinantal point processes

A point process P on a discrete set Y = {y1, . . . , yN} is a probability measure on 2Y , the set of all
subsets of Y . P is called a determinantal point process (DPP) if there exists a positive semidefinite
matrix K indexed by the elements of Y such that if Y ∼ P then for every A ⊆ Y , we have

Determinantal Point Process: P(A ⊆ Y) = det(KA) . (1)

Here KA = [Kij]yi,yj∈A is the restriction of K to the entries indexed by elements of A, and we
adopt det(K∅) = 1. We will refer to K as the marginal kernel, as it contains all the information
needed to compute the probability of including any subset A in Y ∼ P . A few simple observations
follow from Equation (1):

P(yi ∈ Y) = Kii (2)

P(yi, yj ∈ Y) = KiiKjj −KijKji = P(yi ∈ Y)P(yj ∈ Y)−K2
ij . (3)

That is, the diagonal of K gives the marginal probabilities of inclusion for individual elements of
Y , and the off-diagonal elements determine the (anti-) correlations between pairs of elements: large
values of Kij imply that i and j tend not to co-occur. Note that DPPs cannot represent distributions
where elements are more likely to co-occur than if they were independent: correlations are negative.

Figure 1a shows the difference between sampling a set of points in the plane using a DPP (with Kij

inversely related to the distance between points i and j), which leads to a set that is spread out with
good coverage, and sampling points independently, where the points exhibit random clumping.

Determinantal point processes, introduced to model fermions [10], also arise in studies of non-
intersecting random paths, random spanning trees, and eigenvalues of random matrices [3, 2, 7].
The most relevant construction of DPPs for our purpose is via L-ensembles [1]. An L-ensemble
defines a DPP via a positive semidefinite matrix L indexed by the elements of Y .

L-ensemble DPP: PL(Y) =
det(LY)

det(L+ I)
, (4)

where I is the N × N identity matrix. Note that PL is normalized due to the identity∑
Y⊆Y det(LY) = det(L+I). L-ensembles directly define the probability of observing each subset

2

of Y , and subsets that have higher diversity (as measured by the corresponding determinant) have
higher likelihood. To get probabilities of item co-occurrence as in Equation (1), we can compute the
marginal kernel K for the L-ensemble PL:

L-ensemble marginal kernel: K = (L+ I)−1L. (5)

Note that K can be computed from the eigen-decomposition of L =
∑N
k=1 λkvkv

>
k by a simple

re-scaling of eigenvalues: K =
∑N
k=1

λk
λk+1vkv

>
k .

To get a better understanding of how L affects marginals K, note that L can be written as a Gram
matrix with L(yi, yj) = q(yi)φ(yi)

>φ(yj)q(yj) for q(yi) ≥ 0 and some “feature mapping” φ(y) :
Y 7→ RD, where D ≤ N and ||φ(yi)||2 = 1. We can think of q(yi) as the “quality score” for item
yi and φ(yi)>φ(yj) as normalized “similarity” between items yi and yj .

L-ensemble (L=quality*similarity): PL(Y) ∝ det(φ(Y)>φ(Y))
∏
yi∈Y

q2(yi) , (6)

where φ(Y) is a D × |Y | matrix with columns φ(yi), yi ∈ Y . We will use this quality*similarity
based representation extensively below. Roughly speaking, PL(yi ∈ Y) increases monotonically
with quality q(yi) and PL(yi, yj ∈ Y) decreases monotonically with similarity φ(yi)>φ(yj).

We briefly mention a few other efficiently computable quantities of DPPs [1]:

L-ensemble conditionals: PL(Y = A ∪B | A ⊆ Y) =
det(LA∪B)

det(L+ IY\A)
, (7)

where IY\A is the matrix with ones in the diagonal entries indexed by elements of Y \ A and
zeros everywhere else. Conditional marginal probabilities PL(B ⊆ Y | A ⊆ Y) as well as in-
clusion/exclusion probabilities PL(A ⊆ Y ∧ B ∩ Y = ∅) can also be computed efficiently using
eigen-decompositions of L and related matrices.

Sampling

Sampling from PL is also efficient [7]. Let L =
∑N
k=1 λkvkv

>
k be an orthonormal eigen-

decomposition, and let ei be the ith standard basis N -vector (all zeros except for a 1 in the ith
position). Then the following algorithm samples Y ∼ PL:

Initialize: Y = ∅, V = ∅;
Add each eigenvector vk to V independently with prob. λk

λk+1 ;
while |V | > 0 do

Select a yi from Y with Pr(yi) =
1
|V |
∑
v∈V (v

>ei)
2;

Update Y = Y ∪ yi;
Compute V⊥, an orthonormal basis for the subspace of V orthogonal to ei, and let V = V⊥;

end
Return Y ;

Algorithm 1: Sampling algorithm for L-ensemble DPPs.

This yields a natural and efficient procedure for sampling from P given an eigen-decomposition
of L. It also offers some additional insights. Because the dimension of V is reduced by one on
each iteration of the loop, and because the initial dimension of V is simply the number of selected
eigenvectors in step one, the size of Y is distributed as the number of successes in N Bernoulli trials
where trial k succeeds with probability λk

λk+1 . In particular, |Y | cannot be larger than rank(L), and

E[|Y |] =
∑N
k=1

λk
λk+1 .

To get a feel for the sampling algorithm, it is useful to visualize the distributions used to select yi at
each time step, and to see how they are influenced by previously chosen items. Figure 1b shows this
progression for a simple DPP whereY is the set of points in [0, 1], quality scores are uniformly 1, and
the feature mapping is such that φ(yi)>φ(yj) ∝ exp(−(yi − yj)2)—that is, points are more similar
the closer together they are. Initially, the eigenvectors V give rise to a fairly uniform distribution
over points in Y , but as each successive point is selected and V is updated, the distribution shifts to
avoid points near those already chosen.

3

Symbol Meaning
Y, Y, yi, N Y is the base set, Y is a subset of Y , yi is an element of Y , N is the size of |Y|
L,LY L is a p.s.d. matrix defining P(Y) ∝ det(LY), LY is a submatrix indexed by Y
K,KA K is a p.s.d. matrix defining marginals via P(A ⊆ Y) = det(KA)

q(yi), φ(yi) quality*similarity decomposition; Lij = q(yi)φ(yi)
>φ(yj)q(yj), φ(yj) ∈ RD

B,C C = BB> is the dual of L = B>B; the columns of B are Bi = q(yi)φ(yi)
α, yiα, yα α is a factor of a structure; yiα, yα index the relevant part of the structure

Table 1: Summary of notation.

3 Structured determinantal point processes

DPPs are amazingly tractable distributions when N , the size of the base set Y , is small. However,
we are interested in defining DPPs over exponentially sized Y . For example, consider the case where
each yi is itself a sequence of length T : yi = (yi1, . . . , yiT), where yit is the state at time t (e.g., the
location of an object in the t-th frame of a video). Assuming there are n states at each time t and all
state transitions are possible, there are nT possible sequences, so N = nT .

In order to define a DPP over structures such as sequences or trees, we assume a factorization of
the quality score q(yi) and similarity score φ(yi)>φ(yj) into parts, similar to a graphical model
decomposition. For a sequence, the scores can be naturally decomposed into factors that depend on
the state yit at each time t and the states (yit, yit+1) for each transition (t, t+1). More generally, we
assume a set of factors and use the notation yiα to refer to the α part of the structure yi (similarly, we
use yα to refer to the α part of the structure y). We assume that quality decomposes multiplicatively
and similarity decomposes additively, as follows. (As before, L(yi, yj) = q(yi)φ(yi)

>φ(yj)q(yj).)

Structured DPP Factorization: q(yi) =
∏
α

q(yiα) and φ(yi) =
∑
α

φ(yiα). (8)

We argue that these are quite natural factorizations. Quality scores, for example, can be given by a
typical log-linear Markov random field, which defines a multiplicative distribution over structures.
Similarity scores can be thought of as dot products between features of the two labelings.

In our tracking example, the feature mapping φ(yit) should reflect similarity between trajectories;
e.g., features could track coarse-level position at time t, so that the model considers sets with tra-
jectories that pass near or through the same states less likely. A common problem in multiple target
tracking is that the quality of one object’s trajectory and its neighborhood “tube” is often much
more likely than other objects’ trajectories as measured by an HMM or CRF model, so standard
sampling from a graphical model will produce very similar, overlapping trajectories, ignoring less
“detectable” targets. A sample from the structured DPP model would be much more likely to contain
diverse trajectories. (See Figure 2.)

Dual representation

While the factorization in Equation (8) concisely defines a DPP over a structured Y , the more re-
markable fact is that it gives rise to tractable algorithms for computing key marginals and condition-
als when the set of factors is low-treewidth, just as in graphical model inference [8], even though L
is too large to even write down. We propose the following dual representation of L in order to exploit
the factorization. Let us define a D × N matrix B whose columns are given by Bi = q(yi)φ(yi),
so that L = B>B. Consider the D ×D matrix C = BB>; note that typically D � N (actually,
the rank of B is at most O(nT) in the sequence case). The non-zero eigenvalues of C and L are
identical; moreover, if vk is the k-th eigenvector of C, then (1/

√
λk)B

>vk is the k-th eigenvector
of L, and it has the same eigenvalue λk. Thus if C =

∑
k λkvkv

>
k is an eigen-decomposition,

L =
∑
k(B

>vk)(B
>vk)

>. This connection allows us to compute important quantities from C.

For example, to compute the L-ensemble normalization det(L + I) =
∏
k(λk + 1) in Equa-

tion (4), we just need the eigenvalues of C. To compute C itself, we need to compute BB> =∑
yi
q2(yi)φ(yi)φ(yi)

>. This appears daunting, but the factorization turns out to offer an efficient
dynamic programming solution. We discuss in more detail how to compute C for sequences (and
for fixed-treewidth factors in general) in the next section. Assuming we can compute C efficiently,

4

10 20 30 40 50

10

20

30

40

50

S
D

P
P

10 20 30 40 50

10

20

30

40

50

In
de

pe
nd

en
t

10 20 30 40 50

10

20

30

40

50
Sampled particle trajectories (position vs. time)

10 20 30 40 50

10

20

30

40

50

10 20 30 40 50

10

20

30

40

50

10 20 30 40 50

10

20

30

40

50

Figure 2: Sets of (structured) particle trajectories sampled from the SDPP (top row) and indepen-
dently using only quality scores (bottom row). The curves to the left indicate the quality scores for
the possible initial positions.

we can eigen-decompose it as C =
∑
k λkvkv

>
k in O(D3). Then, to compute PL(yi ∈ Y), the

probability of any single trajectory being included in Y ∼ PL, we have all we need:

Structured Marginal: Kii =
∑
k

λk
λk + 1

(
1√
λk
B>i vk

)2

= q2(yi)
∑
k

1

λk + 1
(φ(yi)

>vk)
2 (9)

Similarly, given two trajectories yi and yj , PL(yi, yj ∈ Y) = KiiKjj −K2
ij , where:

Kij = q(yi)q(yj)
∑
k

1

λk + 1
(φ(yi)

>vk)(φ(yj)
>vk) . (10)

4 Inference for SDPPs

We now turn to computing C using the factorization in Equation (8). We have

C =
∑
y∈Y

q2(y)φ(y)φ(y)> =
∑
y∈Y

(∏
α

q2(yα)

)(∑
α

φ(yα)

)(∑
α

φ(yα)

)>
. (11)

If we think of q2(yα) as factor potentials of a graphical model p(y) ∝
∏
α q

2(yα), then computing
C is equivalent to computing second moments of additive features (modulo normalization Z). A
naive algorithm can simply compute all O(T 2) pairwise marginals p(yα, yα′) and, by linearity of
expectation, add up the contributions: C = Z

∑
α,α′

∑
yα,yα′ p(yα, yα′)φ(yα)φ(yα′)>.

However, we can use a much more efficient O(D2T) algorithm based on second-order semiring
message passing [9]. The details are given in Appendix A of the supplementary material, but in short
we apply the standard two-pass belief propagation algorithm for trees with a particular semiring in
place of the usual sum-product or max-sum. By performing message passing under this second-order
semiring, one can efficiently compute any quantity of the form:∑

y∈Y

(∏
α

p(yα)

)(∑
α

a(yα)

)(∑
α

b(yα)

)
(12)

for functions p ≥ 0, a, and b in time O(T). Since the outer product in Equation (11) comprises D2

quantities of the type in Equation (12), we can compute C in time O(D2T).

Sampling

As described in Section 3, the eigen-decomposition of C yields an implicit representation of L: for
each eigenvalue/vector pair (λk, vk) of C, (λk, (1/

√
λk)B

>vk) is a corresponding pair for L. We
show that this implicit representation is enough to efficiently perform sampling using Algorithm 1.

5

The key is to represent V , the orthonormal set of vectors in RN , as a set V̂ of vectors in RD,
with the mapping V = {B>v|v ∈ V̂ }. Let vi, vj be two arbitrary vectors in V̂ . Then we have
(B>vi)

>(B>vj) = v>i BB
>vj = v>i Cvj . Thus we can compute dot products between vectors in

V using their preimage in V̂ . This is sufficient to compute the normalization for each eigenvector
B>v, as required to obtain an initial orthonormal basis. Trivially, we can also compute (implicit)
sums between vectors in V ; this combined with dot products is enough to perform the Gram-Schmidt
orthonormalization needed to obtain V̂⊥ from V̂ and the most recently selected yi at each iteration.

All that remains, then, is to choose a structure yi according to the distribution Pr(yi) =

1/|V̂ |
∑
v∈V̂ ((B

>v)>ei)
2. Recall that the columns of B are given by Bi = q(yi)φ(yi). Thus

the distribution can be rewritten as

Pr(yi) =
1

|V̂ |

∑
v∈V̂

q2(yi)(v
>φ(yi))

2 . (13)

By assumption q2(yi) decomposes multiplicatively over parts of yi, and v>φ(yi) decomposes ad-
ditively. Thus the distribution is a sum of |V̂ | terms, each having the form of Equation (12). We
can therefore apply message passing in the second-order semiring to compute marginals of this
distribution—that is, for each part yα we can compute∑

y∼yα

1

|V̂ |

∑
v∈V̂

q2(y)(v>φ(y))2 , (14)

where the sum is over all structures consistent with the value of yα. This only takes O(T |V̂ |) time.

In fact, the message-passing computation of these marginals yields an efficient algorithm for sam-
pling individual full structures yi as required by Algorithm 1; the key is to pass normal messages
forward, but conditional messages backward. Suppose we have a sequence model; since the forward
pass completes with correct marginals at the final node, we can correctly sample its value before any
backwards messages are sent. Once the value of the final node is fixed, we pass a conditional mes-
sage backwards; that is, we send zeros for all values other than the one just selected. This results
in condtional marginals at the penultimate node. We can then conditionally sample its value, and
repeat this process until all nodes have been assigned. Furthermore, by applying the second-order
semiring we are able to sample from a distribution quite different from that of a traditional graphical
model. The algorithm is described in more detail in Appendix B of the supplementary material.

5 Experiments

We begin with a synthetic motion tracking task, where the goal is to follow a collection of particles as
they travel in a one-dimensional space over time. This is the structured analog of the setting shown
in Figure 1b, where elements of Y are no longer single positions in [0, 1], but are now sequences of
such positions over many time periods. For our experiments, we modeled paths yi over T = 50 time
steps, where at each time t a particle can be in one of 50 discretized positions, yit ∈ {1, . . . , 50}.
The total number of possible trajectories is thus 5050, and there are 250

50

possible sets of trajectories.

While a real tracking problem would involve quality scores q(y) that depend on some observations,
e.g., measurements over time from a set of physical sensors, for simplicity we determine the quality
of a trajectory using only its starting position and a measure of smoothness over time: q(y) =

q(y1)
∏T
t=2 q(yt−1, yt). The initial quality scores q(y1) depicted on the left of Figure 2 are high

in the middle with secondary modes on each side. The transition quality is given by q(yt−1, yt) =
f(yt−1 − yt), where f is the density function of the zero-mean Gaussian with unit variance. We
scale the quality scores so that the expected number of selected trajectories is 5.

We want trajectories to be considered similar if they travel through similar positions, so we define
a 50-dimensional feature vector φ(y) =

∑T
t=1 φ(yt) where φr(yt) ∝ f(i − yt) for r = 1, . . . , 50.

Intuitively, feature r is activated when the trajectory passes near position r, so trajectories passing
through nearby positions will activate the same features and thus appear similar.

Figure 2 shows the results of applying our SDPP sampling algorithm to this setting. Sets of trajec-
tories drawn independently according to quality score tend to cluster in the middle region (second

6

row). The SDPP samples, however, are more diverse, tending to cover more of the space while still
respecting the quality scores—they are still smooth, and still tend to start near the middle position.

Pose estimation

To demonstrate that SDPPs effectively model characteristics of real-world data, we apply them to
a multiple-person pose estimation task. Our dataset consists of 73 still frames taken from various
TV shows, each approximately 720 by 540 pixels in size1. As much as possible, the selected frames
contain three or more people at similar scale, all facing the camera and without serious occlusions.
Sample images from the dataset are shown in Figure 4. The task is to identify the location and pose
of each person in the image. For our purposes, each pose is a structure containing four parts (head,
torso, right arm, and left arm), each of which takes a value consisting of a pixel location and an
orientation (one of 24 discretized angles). There are approximately 75,000 possible such values for
each part, so there are about 475,000 possible poses. Each image was labeled by hand for evaluation.

We use a standard pictorial strucure model [4, 5], treating each pose as a two-level tree with the torso
as the root and the head and arms as leaves. Our quality scores are derived from [14]; they factorize
across the nodes (body parts) P and edges (joints) J as q(y) = γ(

∏
p∈P q(yp)

∏
pp′∈J q(yp, yp′))

β .
γ is a scale parameter that controls the expected number of poses in each sample, and β is a sharpness
parameter that we found helpful in controlling the impact of the quality scores. (We set parameter
values using a held-out training set; see below.) Each part receives a quality score q(yp) given by
a customized part detector previously trained on similar images. The joint quality score q(yp, yp′)
is given by a Gaussian “spring” that encourages, for example, the left arm to begin near the left
shoulder. Full details of the quality terms are provided in [14].

Given our data, we want to discourage the model from selecting overlapping poses, so we design our
similarity features spatially. We define an evenly spaced 8 by 4 grid of reference points x1, . . . , x32,
and use φ(y) =

∑
p∈P φ(yp), where φr(yp) ∝ f(‖yp − xr‖2/σ). Recall that f is the standard

normal density function, and ‖yp − xr‖2 is the distance between the position of part p (ignoring
angle) and the reference point xr. The parameter σ controls the width of the kernel. Poses that
occupy the same part of the image will be near the same reference points, and thus appear similar.

We compare our model against two baselines. The first is an independent model which draws poses
independently according to the distribution obtained by normalizing the quality scores. The second
is a simple non-maxima suppression model that iteratively selects successive poses using the nor-
malized quality scores, but under the hard constraint that they do not overlap with any previously
selected pose. (Poses overlap if they cover any of the same pixels when rendered.) In both cases,
the number of poses is given by a draw from the SDPP model, ensuring no systematic bias.

We split our data randomly into a training set of 13 images and a test set of 60 images. Using the
training set, we select values for γ, β, and σ that optimize overall F1 score at radius 100 (see below),
as well as distinct optimal values of β for the baselines. (γ and σ are irrelevant for the baselines.)
We then use each model to sample 10 sets of poses for each test image, or 600 samples per model.

For each sample, we compute precision, recall, and F1 score. For our purposes, precision is the
fraction of predicted parts where both endpoints are within a particular radius of the endpoints of
an expert-labeled part of the same type (head, left arm, etc.). Correspondingly, recall is the fraction
of expert-labeled parts within a given radius of a predicted part of the same type. Since our SDPP
model encourages diversity, we expect to see improvements in recall at the expense of precision.
F1 score is the harmonic mean of precision and recall. We compute all metrics separately for each
sample, and then average the results across samples and images in the test set.

The results over several different radii are shown in Figure 3a. At tight tolerances the SDPP performs
comparably to the independent samples (perhaps because the quality scores are only accurate at the
mode, so diverse samples are not close enough to be valuable). As the radius increases, however,
the SDPP obtains significantly better results, outperforming both baselines. Figure 3b shows the
curves for the arms alone; the arms tend to be more difficult to locate accurately. Figure 3c shows
the precision/recall obtained by each model. As expected, the SDPP model achieves its improved
F1 score by increasing recall at the cost of precision.

1The images and code from [14] are available at http://www.vision.grasp.upenn.edu/video

7

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Overall F
1

SDPP

Non−max

Indep.

(a)

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Arms F
1

(b)

40 60 80 100 120 140

0.2

0.4

0.6

0.8

Match radius (in pixels)

Precision / recall (circles)

(c)

Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.

Acknowledgments

The authors were partially supported by NSF Grant 0803256.

8

References

[1] A. Borodin. Determinantal point processes, 2009.
[2] A. Borodin and A. Soshnikov. Janossy densities. I. Determinantal ensembles. Journal of

Statistical Physics, 113(3):595–610, 2003.
[3] D. Daley and D. Vere-Jones. An introduction to the theory of point processes: volume I:

elementary theory and methods. Springer, 2003.
[4] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. International

Journal of Computer Vision, 61(1):55–79, 2005.
[5] M. Fischler and R. Elschlager. The representation and matching of pictorial structures. IEEE

Transactions on Computers, 100(22), 1973.
[6] D. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall, 2003.
[7] J. Hough, M. Krishnapur, Y. Peres, and B. Virág. Determinantal processes and independence.

Probability Surveys, 3:206–229, 2006.
[8] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. The

MIT Press, 2009.
[9] Z. Li and J. Eisner. First-and second-order expectation semirings with applications to

minimum-risk training on translation forests. In Proc. EMNLP, 2009.
[10] O. Macchi. The coincidence approach to stochastic point processes. Advances in Applied

Probability, 7(1):83–122, 1975.
[11] J. MacCormick and A. Blake. A probabilistic exclusion principle for tracking multiple objects.

International Journal of Computer Vision, 39(1):57–71, 2000.
[12] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. MIT

Press, Boston, MA, 1999.
[13] T. Nilsen and B. Graveley. Expansion of the eukaryotic proteome by alternative splicing.

Nature, 463(7280):457–463, 2010.
[14] B. Sapp, C. Jordan, and B. Taskar. Adaptive pose priors for pictorial structures. In IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’10), 2010.
[15] T. Zhao and R. Nevatia. Tracking multiple humans in complex situations. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 26:1208–1221, 2004.

9

